7 Test environments for RRM tests

38.508-13GPP5GSPart 1: Common test environmentRelease 17TSUser Equipment (UE) conformance specification

7.0 General

7.0.1 Single PDU configuration for RRM testing

For RRM test case execution on 5G SA UEs defined in TS 38.533 [18]7.1 Requirements, IMS shall not be considered and UE’s shall be able use RRC (IDLE, CONNECTED) preambles defined in TS 38.508-1 Section 4.5. Before entering RRC_CONNECTED or RRC_IDLE state during initial conditions or test procedure, it is recommended that UE is pre-configured with 0 or 1 PDU (non-IMS).

For EN-DC settings the corresponding requirement holds that IMS shall not be considered and it is recommended that UE is pre-configured with 0PDU/0PDN or 1PDU/1 PDN.

7.1 Test equipment requirements

7.1.1 Void

7.1.2 Void

7.1.3 Requirements for OTA test method

7.1.3.1 General

Editor’s Note:

– The UE pre-configuration mentioned below to disable UL Tx diversity schemes shall be voided once a test methodology solution to minimize spectral flatness artefacts between TE and UE over all test points is defined.

For conformance testing using the OTA test environment, the UE under test shall be pre-configured with UL Tx diversity schemes disabled to account for single polarization System Simulator (SS) in the test environment. The UE under test may transmit with dual polarization.

7.1.3.2 RRM baseline setup

The RRM baseline setup shall fulfil the capabilities detailed in this section.

The following permitted test setups are considered for OTA RRM testing:

– DFF test setup as described in Clause B.2.2.

– Simplified DFF test setup as described in Clause B.2.3.

– IFF test setup as described in Clause B.2.4.

– Enhanced IFF test setup based in the IFF test setup described in Clause B.2.6, with the enhancements described in this clause.

– IFF+DFF Hybrid test setup as described in Clause B.7.2, with the enhancements described in this clause.

7.1.3.2.1 General description

TRxPs and Cells:

– Up to 2 NR transmission reception points TRxPs are emulated.

Support of interworking scenarios

– For test scenarios involving both, LTE and NR FR2 carriers, the test setup shall be capable to provide LTE link to the DUT. The emulated LTE cell provides a stable LTE signal without precise propagation modelling or path loss control between it and the DUT. No performance verification for and relative to LTE carriers is supported.

– For test scenarios involving both, NR FR1 and NR FR2 carriers, the test setup shall be capable to provide NR FR1 link to the DUT. The NR FR1 link has a stable and noise-free signal without precise path loss or polarization control. No performance verification for and relative to NR FR1 carriers is supported.

Antennas, polarization, simultaneously active AoAs:

– N dual-polarized antennas transmitting the signals from the emulated gNB sources to the DUT.

– The antennas transmit into the test zone in such a way that signal polarization does not prevent the DUT receiving a consistent, predictable power level.

– N ≥ NMAX_AoAs, where NMAX_AoAs is the maximum number of simultaneously active (emulating signal) angles of arrival AoAs. The NMAX_AoAs for the different permitted test methods is:

– For UE RRM baseline measurement setup based on DFF, the supported NMAX_AoAs = 2.

– For UE RRM baseline measurement setup based on simplified DFF, the supported NMAX_AoAs = 1.

– For UE RRM baseline measurement setup based on IFF, the supported NMAX_AoAs = 1.

– For UE RRM baseline measurement setup based on enhanced IFF, the supported NMAX_AoAs = 2.

– For UE RRM baseline measurement setup based on IFF+DFF, the supported NMAX_AoAs = 2.

Angular Relationship:

– A positioning system such that an angular relationship with two axes of freedom is provided between the DUT and the test system antennas (or the setup should provide equivalent functionality).

– For NMAX_AoAs = 2 the setup shall enable following relative angular relationships between the NMAX_AoAs simultaneously active AoAs: 30°, 60°, 90°, 120° and 150°.

– For single active probe scenarios, in case that step change of AoA is required, the setup shall enable following relative angular change between initial and target AoA: 30°, 60°, 90°, 120° and 150°.

Wanted and noise (AWGN) signals can be transmitted from one or both active probes. Test description will define the exact signal/noise/SNR/SINR level per TRxP at the reference point.

Multiple DL transmission antenna ports:

– In case of multiple DL transmission antenna ports are required for RRM testing, the different antenna ports are mapped to different polarizations.

Measurement Uncertainty:

– The threshold MU for the equivalence framework for RRM will be based on direct far field (DFF) test method for D ≤ 5 cm and on indirect far field (IFF) test method for D > 5 cm. If the MTSU for the IFF test method for D ≤ 5 cm is finalized before DFF, the IFF MTSU shall be used as provisional threshold MU until DFF is completed.

7.1.3.2.2 Applicability criteria

The applicability criteria for the RRM measurement setup based on DFF is described in B.2.2.1.

The applicability criteria for the RRM measurement setup based on simplified DFF is described in B.2.3.1.

The applicability criteria for the RRM measurement setup based on IFF is described in B.2.4.1.

The applicability criteria for the RRM measurement setup based on enhanced IFF is described in B.2.6.1:

The applicability criteria for the RRM measurement setup based on IFF+DFF follows DFF as described in B.2.7.1:

7.1.3.2.3 Measurement distance and quiet zone

For RRM baseline measurement setup based on DFF:

– The measurement distance defined for the DFF UE RF test method described in B.2.2.4 applies.

– A DFF measurement setup has the centre of the Quiet Zone (QZ) located at the centre of the rotational axes (of DUT and measurement antenna). For the RRM measurement baseline setup based on DFF, the vertices of the N probes have to be aligned to the resulting centre of the QZ. The centre of the QZ is taken as the reference point for MU definition for each probe. The same QZ size as for DFF UE RF test method described in B.2.2.2 applies.

For RRM baseline measurement setup based on simplified DFF:

– The measurement distance defined for the simplified DFF UE RF test method described in B.2.3.4 applies.

– The same QZ size and definition as for simplified DFF UE RF test method described in B.2.3.2 applies.

For RRM baseline measurement setup based on IFF:

– The measurement distance defined for the IFF UE RF test method described in B.2.4.4 applies.

– The Quiet Zone definition for the IFF UE RF test method described in B.2.4.2 applies.

For RRM baseline measurement setup based on enhanced IFF:

– The measurement distance defined for the IFF UE RF test method described in B.2.6.4 applies.

– An IFF measurement setup has the centre of the Quiet Zone (QZ) located at the centre of the rotational axes (of DUT). For the RRM measurement baseline setup based on IFF, the reflectors have to be aligned to transmit a plane wave to the resulting centre of the QZ. The centre of the QZ is taken as the reference point for MU definition for each reflector. The QZ is a sphere of radius R. The size of the QZ defined in B.2.6.2 applies.

For RRM baseline measurement setup based on IFF+DFF:

– For IFF TRxPs, the measurement distance defined for the IFF UE RF test method described in B.2.4.4 applies.

– For DFF TRxPs, the measurement distance defined for the DFF UE RF test method described in B.2.2.4 applies.

– An IFF+DFF measurement setup has the centre of the Quiet Zone (QZ) located at the centre of the rotational axes (of DUT). For the RRM measurement baseline setup based on IFF+DFF, IFF reflectors have to be aligned to transmit a plane wave to the resulting centre of the QZ, and the vertices of the DFF probes have to be aligned to the resulting centre of the QZ. The centre of the QZ is taken as the reference point for MU definition for each reflector or probe. The QZ is a sphere of radius R. The size of the QZ is defined in B.2.7.2.

7.1.3.2.4 Quality of the quiet zone

For RRM, the quality of the quiet zone validation defined in Annex O of TS 38.521-2 [15] needs to assess only the single-directional EIRP and EIS metrics. For measurement setups with multiple probes, the QoQZ procedure needs to be performed with all probes present and in the conditions used for RRM testing.

The quality of the quiet zone for the RRM measurement setup based on DFF is described in B.2.2.3. The QoQZ validation needs to be performed only with the reference probe P0.

The quality of the quiet zone for the RRM measurement setup based on simplified DFF is described in B.2.3.3.

The quality of the quiet zone for the RRM measurement setup based on IFF is described in B.2.4.3.

The quality of the quiet zone for the RRM measurement setup based on enhanced IFF is described in B.2.6.3. The QoQZ validation needs to be performed only with the reference reflector, P0, if same sized IFF reflectors are used..

The quality of the quiet zone for the RRM measurement setup based on IFF+DFF is described in B.2.7.3. The QoQZ validation needs to be performed only with the one probe among all DFF probes and one probe among all IFF probes.

7.2 Reference test conditions

7.2.1 Signal levels

7.2.1.1 Void

7.2.1.2 Void

7.2.2 Physical layer parameters

7.2.2.1 Downlink physical layer parameters

As defined in clause 4.3.6 with the following exceptions:

Table 7.2.2.1-1: Physical layer parameters for DCI format 1_1

Derivation Path: Table 4.3.6.1.2.2-1

Parameter

Value

Value in binary

Condition

PUCCH resource indicator

PUCCH-ResourceId[1] = 0 in pucch-ResourceSetID[1] as defined in Table 4.6.3-112 (Mapping as per Table 9.2.3-2 in TS 38.213 [22])

“000”

PDSCH-to-HARQ_feedback timing indicator

corresponding to K1 slots as per Table 9.2.3-1 in TS 38.213 [22] and dl-DataToUL-ACK in Table 4.6.3-112

For 120KHz SCS

K1 = 4 if mod(i,5) = 0
K1 = 3 if mod(i,5) = 1
K1 = 7 if mod(i,5) = 2
where i is slot index per frame; i = {0,…,79}

FR2

PDSCH-to-HARQ_feedback timing indicator

corresponding to K1 slots as per Table 9.2.3-1 in TS 38.213 [22] and dl-DataToUL-ACK in Table 4.6.3-112

K1 = 6 if mod(i,10) = 8
K1 = 5 if mod(i,10) = 0

K1 = 5 if mod(i,10) = 1

K1 = 5 if mod(i,10) = 2

K1 = 5 if mod(i,10) = 9
where i is slot index per frame; i = {0,…,19}

TDDConf.2.1

Condition

Explanation

TDDConf.2.1

TDD UL/DL configuration for SCS=30kHz

7.2.3 Default test frequencies

7.2.3.1 Default test frequencies FR1 NR operating bands

For FR1 NR operating bands the test frequencies for RRM testing are specified in clause 4.3.1.1.

7.2.3.2 Default test frequencies FR2 operating bands

7.2.3.2.1 Reference test frequencies for NR operating band n257

Table 7.2.3.2.1-1: Test frequencies for NR operating band n257 (SCS 120 kHz, ΔFRaster 120 kHz, SSB SCS=120kHz, kSSB=0 and Offset(RBs)=0)

CBW [MHz]

carrierBandwidth

[PRBs]

Range

Carrier centre

[MHz]

Carrier centre

[ARFCN]

point A
[MHz]

absoluteFrequencyPointA
[ARFCN]

offsetToCarrier [Carrier PRBs]

SS block SCS

[kHz]

GSCN

absoluteFrequencySSB

[ARFCN]

Offset Carrier CORESET#0

[RBs]

Note 2

CORESET#0 Index (Offset

[RBs])

Note 1

offsetToPointA
(SIB1)

[PRBs]

Note 1

100

66

Downlink

&

Uplink

Mid

28015.68

2079427

27968.16

2078635

0

120

22472

2078875

0

0

0 (0)

0

100

66

Downlink

&

Uplink

Adjacent inter-frequency cell

28119.36

2081155

28071.84

2080363

0

120

22478

2080603

0

0

0 (0)

0

Note 1: The CORESET#0 Index and the associated CORESET#0 Offset refers to Table 13-8 in TS 38.213 [22]. The value of CORESET#0 Index is signalled controlResourceSetZero (pdcch-ConfigSIB1) in the MIB. The offsetToPointA IE is expressed in units of resource blocks assuming 15 kHz subcarrier spacing for FR1 and 60 kHz subcarrier spacing for FR2.

Note 2: The parameter Offset Carrier CORESET#0 specifies the offset from the lowest subcarrier of the carrier and the lowest subcarrier of CORESET#0. It corresponds to the parameter ΔFOffsetCORESET-0-Carrier in Annex C expressed in number of common RBs.

Table 7.2.3.2.1-2: Test frequencies for NR operating band n257 (SCS 120 kHz, ΔFRaster 120 kHz, SSB SCS=240kHz, kSSB=0 and Offset(RBs)=0)

CBW [MHz]

carrierBandwidth

[PRBs]

Range

Carrier centre

[MHz]

Carrier centre

[ARFCN]

point A
[MHz]

absoluteFrequencyPointA
[ARFCN]

offsetToCarrier [Carrier PRBs]

SS block SCS

[kHz]

GSCN

absoluteFrequencySSB

[ARFCN]

Offset Carrier CORESET#0

[RBs]

Note 2

CORESET#0 Index (Offset

[RBs])

Note 1

offsetToPointA
(SIB1)

[PRBs]

Note 1

100

66

Downlink

&

Uplink

Mid

28001.28

2079187

27953.76

2078395

0

240

22472

2078875

0

0

2 (0)

0

100

66

Downlink

&

Uplink

Adjacent inter-frequency cell

28104.96

2080915

28057.44

2080123

0

240

22478

2080603

0

0

0 (0)

0

Note 1: The CORESET#0 Index and the associated CORESET#0 Offset refers to Table 13-10 in TS 38.213 [22]. The value of CORESET#0 Index is signalled controlResourceSetZero (pdcch-ConfigSIB1) in the MIB. The offsetToPointA IE is expressed in units of resource blocks assuming 15 kHz subcarrier spacing for FR1 and 60 kHz subcarrier spacing for FR2.

Note 2: The parameter Offset Carrier CORESET#0 specifies the offset from the lowest subcarrier of the carrier and the lowest subcarrier of CORESET#0. It corresponds to the parameter ΔFOffsetCORESET-0-Carrier in Annex C expressed in number of common RBs.

7.2.3.2.2 Reference test frequencies for NR operating band n258

Table 7.2.3.2.2-1: Test frequencies for NR operating band n258 (SCS 120 kHz, ΔFRaster 120 kHz SSB SCS=120kHz, kSSB=0 and Offset(RBs)=0)

CBW [MHz]

carrierBandwidth

[PRBs]

Range

Carrier centre

[MHz]

Carrier centre

[ARFCN]

point A
[MHz]

absoluteFrequencyPointA
[ARFCN]

offsetToCarrier [Carrier PRBs]

SS block SCS

[kHz]

GSCN

absoluteFrequencySSB

[ARFCN]

Offset Carrier CORESET#0

[RBs]

Note 2

CORESET#0 Index (Offset

[RBs])

Note 1

offsetToPointA
(SIB1)

[PRBs]

Note 1

100

66

Downlink

&

Uplink

Mid

25890.24

2044003

25842.72

2043211

0

120

22349

2043451

0

0

0 (0)

0

100

66

Downlink

&

Uplink

Adjacent inter-frequency cell

25993.92

2045731

25946.4

2044939

0

120

22355

2045179

0

0

0 (0)

0

Note 1: The CORESET#0 Index and the associated CORESET#0 Offset refers to Table 13-8 in TS 38.213 [22]. The value of CORESET#0 Index is signalled controlResourceSetZero (pdcch-ConfigSIB1) in the MIB. The offsetToPointA IE is expressed in units of resource blocks assuming 15 kHz subcarrier spacing for FR1 and 60 kHz subcarrier spacing for FR2.

Note 2: The parameter Offset Carrier CORESET#0 specifies the offset from the lowest subcarrier of the carrier and the lowest subcarrier of CORESET#0. It corresponds to the parameter ΔFOffsetCORESET-0-Carrier in Annex C expressed in number of common RBs.

Table 7.2.3.2.2-2: Test frequencies for NR operating band n258 (SCS 120 kHz, ΔFRaster 120 kHz, SSB SCS=240kHz, kSSB=0 and Offset(RBs)=0)

CBW [MHz]

carrierBandwidth

[PRBs]

Range

Carrier centre

[MHz]

Carrier centre

[ARFCN]

point A
[MHz]

absoluteFrequencyPointA
[ARFCN]

offsetToCarrier [Carrier PRBs]

SS block SCS

[kHz]

GSCN

absoluteFrequencySSB

[ARFCN]

Offset Carrier CORESET#0

[RBs]

Note 2

CORESET#0 Index (Offset

[RBs])

Note 1

offsetToPointA
(SIB1)

[PRBs]

Note 1

100

66

Downlink

&

Uplink

Mid

25893.12

2044051

25845.6

2043259

0

240

22350

2043739

0

0

2 (0)

0

100

66

Downlink

&

Uplink

Adjacent inter-frequency cell

25996.8

2045779

25949.28

2044987

0

240

22356

2045467

0

0

0 (0)

0

Note 1: The CORESET#0 Index and the associated CORESET#0 Offset refers to Table 13-10 in TS 38.213 [22]. The value of CORESET#0 Index is signalled controlResourceSetZero (pdcch-ConfigSIB1) in the MIB. The offsetToPointA IE is expressed in units of resource blocks assuming 15 kHz subcarrier spacing for FR1 and 60 kHz subcarrier spacing for FR2.

Note 2: The parameter Offset Carrier CORESET#0 specifies the offset from the lowest subcarrier of the carrier and the lowest subcarrier of CORESET#0. It corresponds to the parameter ΔFOffsetCORESET-0-Carrier in Annex C expressed in number of common RBs.

7.2.3.2.3 Reference test frequencies for NR operating band n259

Table 7.2.3.2.3-1: Test frequencies for NR operating band n259 (SCS 120 kHz, ΔFRaster 120 kHz SSB SCS=120kHz, kSSB=0 and Offset(RBs)=0)

CBW [MHz]

carrierBandwidth

[PRBs]

Range

Carrier centre

[MHz]

Carrier centre

[ARFCN]

point A
[MHz]

absoluteFrequencyPointA
[ARFCN]

offsetToCarrier [Carrier PRBs]

SS block SCS

[kHz]

GSCN

absoluteFrequencySSB

[ARFCN]

Offset Carrier CORESET#0

[RBs]

Note 2

CORESET#0 Index (Offset

[RBs])

Note 1

offsetToPointA
(SIB1)

[PRBs]

Note 1

100

66

Downlink

&

Uplink

Mid

41511.36

2304355

41463.84

2303563

0

120

23253

2303803

0

0

0 (0)

0

100

66

Downlink

&

Uplink

Adjacent inter-frequency cell

41615.04

2306083

41567.52

2305291

0

120

23259

2305531

0

0

0 (0)

0

Note 1: The CORESET#0 Index and the associated CORESET#0 Offset refers to Table 13-8 in TS 38.213 [22]. The value of CORESET#0 Index is signalled controlResourceSetZero (pdcch-ConfigSIB1) in the MIB. The offsetToPointA IE is expressed in units of resource blocks assuming 15 kHz subcarrier spacing for FR1 and 60 kHz subcarrier spacing for FR2.

Note 2: The parameter Offset Carrier CORESET#0 specifies the offset from the lowest subcarrier of the carrier and the lowest subcarrier of CORESET#0. It corresponds to the parameter ΔFOffsetCORESET-0-Carrier in Annex C expressed in number of common RBs.

Table 7.2.3.2.3-2: Test frequencies for NR operating band n259 (SCS 120 kHz, ΔFRaster 120 kHz, SSB SCS=240kHz, kSSB=0 and Offset(RBs)=0)

CBW [MHz]

carrierBandwidth

[PRBs]

Range

Carrier centre

[MHz]

Carrier centre

[ARFCN]

point A
[MHz]

absoluteFrequencyPointA
[ARFCN]

offsetToCarrier [Carrier PRBs]

SS block SCS

[kHz]

GSCN

absoluteFrequencySSB

[ARFCN]

Offset Carrier CORESET#0

[RBs]

Note 2

CORESET#0 Index (Offset

[RBs])

Note 1

offsetToPointA
(SIB1)

[PRBs]

Note 1

100

66

Downlink

&

Uplink

Mid

41514.24

2304403

41466.72

2303611

0

240

23254

2304091

0

0

2 (0)

0

100

66

Downlink

&

Uplink

Adjacent inter-frequency cell

41617.92

2306131

41570.4

2305339

0

240

23260

2305819

0

0

0 (0)

0

Note 1: The CORESET#0 Index and the associated CORESET#0 Offset refers to Table 13-10 in TS 38.213 [22]. The value of CORESET#0 Index is signalled controlResourceSetZero (pdcch-ConfigSIB1) in the MIB. The offsetToPointA IE is expressed in units of resource blocks assuming 15 kHz subcarrier spacing for FR1 and 60 kHz subcarrier spacing for FR2.

Note 2: The parameter Offset Carrier CORESET#0 specifies the offset from the lowest subcarrier of the carrier and the lowest subcarrier of CORESET#0. It corresponds to the parameter ΔFOffsetCORESET-0-Carrier in Annex C expressed in number of common RBs.

7.2.3.2.4 Reference test frequencies for NR operating band n260

Table 7.2.3.2.4-1: Test frequencies for NR operating band n260 (SCS 120 kHz, ΔFRaster 120 kHz SSB SCS=120kHz, kSSB=0 and Offset(RBs)=0)

CBW [MHz]

carrierBandwidth

[PRBs]

Range

Carrier centre

[MHz]

Carrier centre

[ARFCN]

point A
[MHz]

absoluteFrequencyPointA
[ARFCN]

offsetToCarrier [Carrier PRBs]

SS block SCS

[kHz]

GSCN

absoluteFrequencySSB

[ARFCN]

Offset Carrier CORESET#0

[RBs]

Note 2

CORESET#0 Index (Offset

[RBs])

Note 1

offsetToPointA
(SIB1)

[PRBs]

Note 1

100

66

Downlink

&

Uplink

Mid

38504.64

2254243

38457.12

2253451

0

120

23079

2253691

0

0

0 (0)

0

100

66

Downlink

&

Uplink

Adjacent inter-frequency cell

38608.32

2255971

38560.8

2255179

0

120

23085

2255419

0

0

0 (0)

0

Note 1: The CORESET#0 Index and the associated CORESET#0 Offset refers to Table 13-8 in TS 38.213 [22]. The value of CORESET#0 Index is signalled controlResourceSetZero (pdcch-ConfigSIB1) in the MIB. The offsetToPointA IE is expressed in units of resource blocks assuming 15 kHz subcarrier spacing for FR1 and 60 kHz subcarrier spacing for FR2.

Note 2: The parameter Offset Carrier CORESET#0 specifies the offset from the lowest subcarrier of the carrier and the lowest subcarrier of CORESET#0. It corresponds to the parameter ΔFOffsetCORESET-0-Carrier in Annex C expressed in number of common RBs.

Table 7.2.3.2.4-2: Test frequencies for NR operating band n260 (SCS 120 kHz, ΔFRaster 120 kHz, SSB SCS=240kHz, kSSB=0 and Offset(RBs)=0)

CBW [MHz]

carrierBandwidth

[PRBs]

Range

Carrier centre

[MHz]

Carrier centre

[ARFCN]

point A
[MHz]

absoluteFrequencyPointA
[ARFCN]

offsetToCarrier [Carrier PRBs]

SS block SCS

[kHz]

GSCN

absoluteFrequencySSB

[ARFCN]

Offset Carrier CORESET#0

[RBs]

Note 2

CORESET#0 Index (Offset

[RBs])

Note 1

offsetToPointA
(SIB1)

[PRBs]

Note 1

100

66

Downlink

&

Uplink

Mid

38507.52

2254291

38460

2253499

0

240

23080

2253979

0

0

2 (0)

0

100

66

Downlink

&

Uplink

Adjacent inter-frequency cell

38611.2

2256019

38563.68

2255227

0

240

23086

2255707

0

0

0 (0)

0

Note 1: The CORESET#0 Index and the associated CORESET#0 Offset refers to Table 13-10 in TS 38.213 [22]. The value of CORESET#0 Index is signalled controlResourceSetZero (pdcch-ConfigSIB1) in the MIB. The offsetToPointA IE is expressed in units of resource blocks assuming 15 kHz subcarrier spacing for FR1 and 60 kHz subcarrier spacing for FR2.

Note 2: The parameter Offset Carrier CORESET#0 specifies the offset from the lowest subcarrier of the carrier and the lowest subcarrier of CORESET#0. It corresponds to the parameter ΔFOffsetCORESET-0-Carrier in Annex C expressed in number of common RBs.

7.2.3.2.5 Reference test frequencies for NR operating band n261

Table 7.2.3.2.5-1: Test frequencies for NR operating band n261 (SCS 120 kHz, ΔFRaster 120 kHz SSB SCS=120kHz, kSSB=0 and Offset(RBs)=0)

CBW [MHz]

carrierBandwidth

[PRBs]

Range

Carrier centre

[MHz]

Carrier centre

[ARFCN]

point A
[MHz]

absoluteFrequencyPointA
[ARFCN]

offsetToCarrier [Carrier PRBs]

SS block SCS

[kHz]

GSCN

absoluteFrequencySSB

[ARFCN]

Offset Carrier CORESET#0

[RBs]

Note 2

CORESET#0 Index (Offset

[RBs])

Note 1

offsetToPointA
(SIB1)

[PRBs]

Note 1

100

66

Downlink

&

Uplink

Mid

27929.28

2077987

27881.76

2077195

0

120

22467

2077435

0

0

0 (0)

0

100

66

Downlink

&

Uplink

Adjacent inter-frequency cell

28032.96

2079715

27985.44

2078923

0

120

22473

2079163

0

0

0 (0)

0

Note 1: The CORESET#0 Index and the associated CORESET#0 Offset refers to Table 13-8 in TS 38.213 [22]. The value of CORESET#0 Index is signalled controlResourceSetZero (pdcch-ConfigSIB1) in the MIB. The offsetToPointA IE is expressed in units of resource blocks assuming 15 kHz subcarrier spacing for FR1 and 60 kHz subcarrier spacing for FR2.

Note 2: The parameter Offset Carrier CORESET#0 specifies the offset from the lowest subcarrier of the carrier and the lowest subcarrier of CORESET#0. It corresponds to the parameter ΔFOffsetCORESET-0-Carrier in Annex C expressed in number of common RBs.

Table 7.2.3.2.5-2: Test frequencies for NR operating band n261 (SCS 120 kHz, ΔFRaster 120 kHz, SSB SCS=240kHz, kSSB=0 and Offset(RBs)=0)

CBW [MHz]

carrierBandwidth

[PRBs]

Range

Carrier centre

[MHz]

Carrier centre

[ARFCN]

point A
[MHz]

absoluteFrequencyPointA
[ARFCN]

offsetToCarrier [Carrier PRBs]

SS block SCS

[kHz]

GSCN

absoluteFrequencySSB

[ARFCN]

Offset Carrier CORESET#0

[RBs]

Note 2

CORESET#0 Index (Offset

[RBs])

Note 1

offsetToPointA
(SIB1)

[PRBs]

Note 1

100

66

Downlink

&

Uplink

Mid

27932.16

2078035

27884.64

2077243

0

240

22468

2077723

0

0

2 (0)

0

100

66

Downlink

&

Uplink

Adjacent inter-frequency cell

28035.84

2079763

27988.32

2078971

0

240

22474

2079451

0

0

0 (0)

0

Note 1: The CORESET#0 Index and the associated CORESET#0 Offset refers to Table 13-10 in TS 38.213 [22]. The value of CORESET#0 Index is signalled controlResourceSetZero (pdcch-ConfigSIB1) in the MIB. The offsetToPointA IE is expressed in units of resource blocks assuming 15 kHz subcarrier spacing for FR1 and 60 kHz subcarrier spacing for FR2.

Note 2: The parameter Offset Carrier CORESET#0 specifies the offset from the lowest subcarrier of the carrier and the lowest subcarrier of CORESET#0. It corresponds to the parameter ΔFOffsetCORESET-0-Carrier in Annex C expressed in number of common RBs.

7.3 Default NG-RAN RRC message and information elements contents for RRM

7.3.0 General definitions

This section defines general concepts and conditions used in the RRM message contents in clause 7.3:

– CSI-RS for Tracking, CSI reporting and beam management

Table 7.3.0-1: Definitions of CSI-RS for Tracking, CSI reporting and beam management

Type

Short version

Explanation

CSI-RS for tracking

TRS

Corresponds to TRS.X.Y FDD/TDD RMCs in TS 38.533 [18]

CSI-RS for BM

BM

Corresponds to CSI-RS.X.2 FDD/TDD RMCs in TS 38.533 [18]

CSI-RS for CSI reporting

CSI

Corresponds to CSI-RS.X.1 FDD/TDD RMCs in TS 38.533 [18]

CSI-RS for IM

CSI-IM

CSI-IM resources for CSI reporting. Needed when CSI-RS.X.1 FDD/TDD RMCs are configured.

Editor’s Note: The message contents for CSI-RS.X.3/4 FDD/TDD RMCs in TS 38.533 [18] are not yet defined.

7.3.1 Radio resource control information elements for RRM

As defined in clause 4.6.3 with the following exceptions:

TDD-UL-DL-ConfigCommon

Table 7.3.1-1: TDD-UL-DL-ConfigCommon

Derivation Path: Table 4.6.3-192

Information Element

Value/remark

Comment

Condition

TDD-UL-DL-ConfigCommon ::= SEQUENCE {

referenceSubcarrierSpacing

SubcarrierSpacing

pattern1 SEQUENCE {

dl-UL-TransmissionPeriodicity

ms0p625

TDDConf.3.1

nrofDownlinkSlots

3

TDDConf.2.1, TDDConf.3.1

1

TDDConf.1.1

nrofDownlinkSymbols

10

TDDConf.1.1, TDDConf.3.1

6

TDDConf.2.1

nrofUplinkSlots

2

TDDConf.1.1

1

TDDConf.3.1

4

TDDConf.2.1

nrofUplinkSymbols

4

TDDConf.2.1

2

TDDConf.1.1, TDDConf.3.1

dl-UL-TransmissionPeriodicity-v1530

Not present

ms4

TDDConf.1.1,

TDDConf.2.1

}

pattern2

Not present

pattern2 SEQUENCE {

TDDConf.1.1,

TDDConf.2.1

dl-UL-TransmissionPeriodicity

ms1

TDDConf.1.1,

TDDConf.2.1

nrofDownlinkSlots

1

TDDConf.1.1

2

TDDConf.2.1

nrofDownlinkSymbols

0

TDDConf.1.1,

TDDConf.2.1

nrofUplinkSlots

0

TDDConf.1.1,

TDDConf.2.1

nrofUplinkSymbols

0

TDDConf.1.1,

TDDConf.2.1

}

}

Condition

Explanation

TDDConf.1.1

TDD UL/DL configuration for SCS=15kHz

TDDConf.2.1

TDD UL/DL configuration for SCS=30kHz

TDDConf.3.1

TDD UL/DL configuration for SCS=120kHz

FilterCoefficient

Table 7.3.1-2: FilterCoefficient

Derivation Path: Table 4.6.3-57

Information Element

Value/remark

Comment

Condition

FilterCoefficient

fc0

L3 filtering is not used

SSB-MTC

Table 7.3.1-3: SSB-MTC

Derivation Path: Table 4.6.3-185

Information Element

Value/remark

Comment

Condition

SSB-MTC ::= SEQUENCE {

periodicityAndOffset CHOICE {

sf20

0

SMTC.1, SMTC.2

10

SMTC.4, SMTC.5

17

SMTC.6

sf160

0

SMTC.3

}

duration

sf1

SMTC.1, SMTC.3, SMTC.4

sf5

SMTC.2, SMTC.5

SMTC.6

}

Condition

Explanation

SMTC.n

SMTC pattern n as defined in 38.533 Annex A.4

SubcarrierSpacing

Table 7.3.1-3a: SubcarrierSpacing

Derivation Path: Table 4.6.3-188

Information Element

Value/remark

Comment

Condition

ssbSubcarrierSpacing

kHz15

SSB.1 FR1, SSB.3 FR1 or SSB.5 FR1

kHz30

SSB.2 FR1, SSB.4 FR1 or SSB.6 FR1

kHz120

SSB.1 FR2, SSB.3 FR2, SSB.5 FR2 or SSB.7 FR2

kHz240

SSB.2 FR2, SSB.4 FR2, SSB.6 FR2 or SSB.8 FR2

Condition

Explanation

SSB.n FR1

SSB RMC n for FR1 as defined in 38.533 Annex A.3.1

SSB.n FR2

SSB RMC n for FR2 as defined in 38.533 Annex A.3.2

ServingCellConfigCommon

Table 7.3.1-4: ServingCellConfigCommon

Derivation Path: Table 4.6.3-168

Information Element

Value/remark

Comment

Condition

ServingCellConfigCommon ::= SEQUENCE {

ssb-PositionsInBurst CHOICE {

shortBitmap

1000

1 SS Block in low FR1 frequencies

LOW_FREQ

1100

2 SS Blocks in low FR1 frequencies

2SSB AND LOW_FREQ

mediumBitmap

10000000

1 SS Block in high FR1 frequencies

HIGH_FREQ

11000000

2 SS Blocks in high FR1 frequencies

2SSB AND HIGH_FREQ

longBitmap

1000000000000000000000000000000000000000000000000000000000000000

1 SS Block in FR2

FR2

1100000000000000000000000000000000000000000000000000000000000000

2 SS Blocks in FR2

2SSB AND FR2

}

ssb-periodicityServingCell

ms20

ssbSubcarrierSpacing

kHz15

kHz30

SCS30kHz

kHz120

FR2

}

kHz240

FR2 AND SCS240kHz

Condition

Explanation

LOW_FREQ

Frequency <= 2.4 GHz for TDD or Frequency <= 3 GHz for FDD

HIGH_FREQ

FR1 and (Frequency > 2.4 GHz for TDD or Frequency > 3 GHz for FDD or CASE_C)

2SSB

The SSB pattern as defined in TS 38.533 [18] Annex A.3.1 contain 2 SSBs within a burst

SCS30kHz

The SSB pattern as defined in TS 38.533 [18] Annex A.3.1 is for 30 kHz SCS

SCS240kHz

The SSB pattern as defined in TS 38.533 [18] Annex A.3.1 is for 240 kHz SCS

ServingCellConfigCommonSIB

Table 7.3.1-5: ServingCellConfigCommonSIB-RRM

Derivation Path: Table 4.6.3-169

Information Element

Value/remark

Comment

Condition

ServingCellConfigCommonSIB ::= SEQUENCE {

ssb-PositionsInBurst SEQUENCE {

inOneGroup

’1000 0000’B

When carrier frequency <= 3 GHz for FDD or <= 2.4 GHz for TDD, only the 4 leftmost bits are valid;

’1100 0000’B

2SSB

groupPresence

Not present

’1000 0000’B

FR2

}

}

Condition

Explanation

FR2

Frequency range 2

2SSB

For configuration with 2 SS Blocks

– CSI-MeasConfig

Table 7.3.1-6: CSI-MeasConfig for RRM

Derivation Path: Table 4.6.3-38

Information Element

Value/remark

Comment

Condition

CSI-MeasConfig::= SEQUENCE {

nzp-CSI-RS-ResourceToAddModList SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-Resources)) OF NZP-CSI-RS-Resource {

n1+n2+n3+n4+n5 entries

n1=1 if CSI-RS for CSI is configured in test case, n1=0 otherwise;

n2=0 if CSI-RS for BM is not configured in the test case. If CSI-RS for BM is configured in the test case, n2 = 2 if 2SSB, n2 = 1 otherwise

n3=4 if TRS is configured in test case, n3=0 otherwise;

n4=4 if second resource set of TRS is configured in test case, n4=0 otherwise;

n5=2 if aperiodic CSI-RS for BM is configured in test case, n5=0 otherwise;

NZP-CSI-RS-Resource[k, k=1..n1]

NZP-CSI-RS-Resource for CSI

entry 1

n1>0

NZP-CSI-RS-Resource[k, k=n1+1.. n1+n2]

NZP-CSI-RS-Resource for BM (k-n1-1)

entry …

n2>0

NZP-CSI-RS-Resource[k, k= n1+n2+1.. n1+n2+n3]

NZP-CSI-RS-Resource for TRS (k-n1-n2)

entry …

n3>0

NZP-CSI-RS-Resource[k, k= n1+n2+n3+1.. n1+n2+n3+n4]

NZP-CSI-RS-Resource for TRS (k-n1-n2-n3) with condition SECOND_SET

entry …

n4>0

NZP-CSI-RS-Resource[k, k= n1+n2+n3+n4+1.. n1+n2+n3+n4+n5]

NZP-CSI-RS-Resource for BM (k-n1-n2-n3-n4) with condition APERIODIC

entry …

n5>0

}

nzp-CSI-RS-ResourceSetToAddModList SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-ResourceSets)) OF NZP-CSI-RS-ResourceSet {

m1+m2+m3+m4+m5 entries

mi=1 if ni>0, mi=0 otherwise

NZP-CSI-RS-ResourceSet[k, k=1..m1]

NZP-CSI-RS-ResourceSet for CSI

entry 1

n1>0

NZP-CSI-RS-ResourceSet[k, k=m1+1.. m1+m2]

NZP-CSI-RS-ResourceSet for BM

entry …

n2>0

NZP-CSI-RS-ResourceSet[k, k= m1+m2+1.. m1+m2+m3]

NZP-CSI-RS-ResourceSet for TRS

entry …

n3>0

NZP-CSI-RS-ResourceSet[k, k= m1+m2+m3+1.. m1+m2+m3+m4]

NZP-CSI-RS-ResourceSet for TRS with condition SECOND_SET

entry …

n4>0

NZP-CSI-RS-ResourceSet[k, k= m1+m2+m3+m4+1.. m1+m2+m3+m4+m5]

NZP-CSI-RS-ResourceSet for BM with condition APERIODIC

entry …

n5>0

}

csi-IM-ResourceToAddModList SEQUENCE (SIZE (1..maxNrofCSI-IM-Resources)) OF CSI-IM-Resource {

1 entry

n1>0

CSI-IM-Resource[1]

CSI-IM-Resource-RRM

entry 1

}

csi-IM-ResourceToAddModList

Not present

n1=0

csi-IM-ResourceSetToAddModList SEQUENCE (SIZE (1..maxNrofCSI-IM-ResourceSets)) OF CSI-IM-ResourceSet {

1 entry

n1>0

CSI-IM-ResourceSet[1]

CSI-IM-ResourceSet-RRM

entry 1

}

csi-IM-ResourceSetToAddModList

Not present

n1=0

csi-SSB-ResourceSetToAddModList SEQUENCE (SIZE (1..maxNrofCSI-SSB-ResourceSets)) OF CSI-SSB-ResourceSet {

CSI-SSB-ResourceSet[1]

CSI-SSB-ResourceSet-RRM

entry 1

}

csi-ResourceConfigToAddModList SEQUENCE (SIZE (1..maxNrofCSI-ResourceConfigurations)) OF CSI-ResourceConfig {

p1+m2+m3+m5 entries

p1=m1+1 if n1>0, p1=0 otherwise.

CSI-ResourceConfig[k, k=1..m1]

CSI-ResourceConfig for CSI

entry 1

n1>0

CSI-ResourceConfig[k, k=p1]

CSI-ResourceConfig for CSI-IM

entry …

n1>0

CSI-ResourceConfig[k, k=p1+1.. p1+m2]

CSI-ResourceConfig for BM

entry …

n2>0

CSI-ResourceConfig[k, k= p1+m2+1.. p1+m2+m3]

CSI-ResourceConfig for TRS

entry …

n3>0 and n4=0

CSI-ResourceConfig for TRS with condition SECOND_SET

n4>0

CSI-ResourceConfig[k, k= p1+m2+m3+1.. p1+m2+m3+m5]

CSI-ResourceConfig for BM with condition APERIODIC

entry …

n5>0

}

csi-ReportConfigToAddModList SEQUENCE (SIZE (1..maxNrofCSI-ReportConfigurations)) OF CSI-ReportConfig {

r1+r2+r5+s1 entries

r1 = 1 if CSI Reporting for CSI is configured in test case, r1 = 0 otherwise;

r2 = 1 if CSI Reporting for BM is configured in test case, r2 = 0 otherwise;

r5 = 1 if aperiodic CSI Reporting for BM is configured in test case, r5 = 0 otherwise;

s1 = 1 if:

– this CSI-MeasConfig is configured on NR SpCell, and,

– CSI-RS for CSI is configured on SCell in TC, and,

– SCell is not a PUCCH-SCell

Otherwise s1 = 0.

CSI-ReportConfig[k, k=1..r1]

CSI-ReportConfig for CSI

entry 1

r1>0

CSI-ReportConfig[k, k=r1+1.. r1+r2]

CSI-ReportConfig for BM

entry …

r2>0

CSI-ReportConfig[k, k=r1+r2+1.. r1+r2+r5]

CSI-ReportConfig for BM with condition APERIODIC

entry …

r5>0

CSI-ReportConfig[k, k=r1+r2+r5+1.. r1+r2+r5+s1+1]

CSI-ReportConfig for CSI with condition SCELL_CSI_ON_SPCELL

entry …

s1>0

}

reportTriggerSize

Not present

1

n5>0

aperiodicTriggerStateList CHOICE {

Not present

setup

CSI-AperiodicTriggerStateList

n5>0

}

}

Condition

Explanation

2SSB

For configuration with 2 SS Blocks

NZP-CSI-RS-Resource for TRS

Table 7.3.1-7: NZP-CSI-RS-Resource for TRS(Id)

Derivation Path: Table 4.6.3-45

Information Element

Value/remark

Comment

Condition

NZP-CSI-RS-Resource ::= SEQUENCE {

NZP-CSI-RS-ResourceId

NZP-CSI-RS-ResourceId for TRS(Id)

NZP-CSI-RS-ResourceId for TRS(Id) with Condition SECOND_SET

SECOND_SET

CSI-RS-ResourceMapping

CSI-RS-ResourceMapping for TRS(Id)

CSI-RS-ResourceMapping for TRS(Id) with condition SECOND_SET

SECOND_SET

powerControlOffset

0

powerControlOffsetSS

db0

scramblingID

PhysCellId

PCI of the cell sending the TRS

periodicityAndOffset

CSI-ResourcePeriodicityAndOffset for TRS(Id)

qcl-InfoPeriodicCSI-RS

TCI-StateId-RRM(0)

TCI-StateId-RRM(1)

SECOND_SET

}

Condition

Explanation

SECOND_SET

For resource belong to the second resource set for TRS, only applies to FR2 test

NZP-CSI-RS-Resource for CSI

Table 7.3.1-7A: NZP-CSI-RS-Resource for CSI

Derivation Path: Table 4.6.3-45

Information Element

Value/remark

Comment

Condition

NZP-CSI-RS-Resource ::= SEQUENCE {

nzp-CSI-RS-ResourceId

NZP-CSI-RS-ResourceId for CSI

resourceMapping

CSI-RS-ResourceMapping for CSI

powerControlOffset

0

powerControlOffsetSS

db0

scramblingID

0

periodicityAndOffset

CSI-ResourcePeriodicityAndOffset for CSI

qcl-InfoPeriodicCSI-RS

TCI-StateId-RRM(0)

}

NZP-CSI-RS-Resource for BM

Table 7.3.1-7B: NZP-CSI-RS-Resource for BM(Id)

Derivation Path: Table 4.6.3-45

Information Element

Value/remark

Comment

Condition

NZP-CSI-RS-Resource ::= SEQUENCE {

nzp-CSI-RS-ResourceId

NZP-CSI-RS-ResourceId for BM (Id)

NZP-CSI-RS-ResourceId for BM (Id) with condition APERIODIC

APERIODIC

resourceMapping

CSI-RS-ResourceMapping for BM (Id)

powerControlOffset

0

powerControlOffsetSS

db0

scramblingID

0

periodicityAndOffset

CSI-ResourcePeriodicityAndOffset for BM

Not present

APERIODIC

qcl-InfoPeriodicCSI-RS

TCI-StateId-RRM(Id)

Not present

APERIODIC

}

Condition

Explanation

APERIODIC

For apeiodic CSI-RS resources

NZP-CSI-RS-Resource for TRS

Table 7.3.1-7C: NZP-CSI-RS-ResourceId for TRS(Id)

Derivation Path: Table 4.6.3-86

Information Element

Value/remark

Comment

Condition

NZP-CSI-RS-ResourceId

n+Id-1

n is the first NZP-CSI-RS-ResourceId allocated for TRS resource set.

Value of n is left to internal implementation

Id = 1,2,3,4

n+Id+3

SECOND_SET

Condition

Explanation

SECOND_SET

For the second TRS resource set configured in test, only applies to FR2 test

NZP-CSI-RS-ResourceId for CSI

Table 7.3.1-7D: NZP-CSI-RS-ResourceId for CSI

Derivation Path: Table 4.6.3-86

Information Element

Value/remark

Comment

Condition

NZP-CSI-RS-ResourceId

n

n is the NZP-CSI-RS-ResourceId allocated for CSI-RS for CSI report.

Value of n is left to internal implementation

NZP-CSI-RS-ResourceId for BM

Table 7.3.1-7E: NZP-CSI-RS-ResourceId for BM(Id)

Derivation Path: Table 4.6.3-86

Information Element

Value/remark

Comment

Condition

NZP-CSI-RS-ResourceId

n+Id

n is the first NZP-CSI-RS-ResourceId allocated for CSI-RS for BM.

Value of n is left to internal implementation

Id = 0,1

m+Id

m is the first NZP-CSI-RS-ResourceId allocated for aperiodic CSI-RS for BM.

Value of m is left to internal implementation

Id = 0,1

APERIODIC

Condition

Explanation

APERIODIC

For apeiodic CSI-RS resources

CSI-RS-ResourceMapping for TRS

Table 7.3.1-8: CSI-RS-ResourceMapping for TRS(Id)

Derivation Path: Table 4.6.3-45 with condition TRS

Information Element

Value/remark

Comment

Condition

CSI-RS-ResourceMapping ::= SEQUENCE {

frequencyDomainAllocation CHOICE {

row1

0001

k0=0 for CSI-RS resource 1,2,3,4

}

firstOFDMSymbolInTimeDomain

5

l0 = 5 for CSI-RS resource 1 and 3

(Id = 1 or 3) AND FR1

9

l0 = 9 for CSI-RS resource 2 and 4

(Id = 2 or 4) AND FR1

1

(Id = 1 or 3) AND FR2

2

(Id = 1 or 3) AND FR2 AND SECOND_SET

5

(Id = 2 or 4) AND FR2

6

(Id = 1 or 3) AND FR2 AND SECOND_SET

nrofPorts

p1

1 for CSI-RS resource 1,2,3,4

freqBand

CSI-FrequencyOccupation-RRM

}

Condition

Explanation

SECOND_SET

For the second resource set for TRS configured in test, only applies to FR2 test

CSI-RS-ResourceMapping for CSI

Table 7.3.1-8A: CSI-RS-ResourceMapping for CSI

Derivation Path: Table 4.6.3-45

Information Element

Value/remark

Comment

Condition

CSI-RS-ResourceMapping ::= SEQUENCE {

frequencyDomainAllocation CHOICE {

other

000001

}

nrofPorts

p2

firstOFDMSymbolInTimeDomain

5

NOT SCS15

4

SCS15

freqBand

CSI-FrequencyOccupation-RRM

}

CSI-RS-ResourceMapping for BM

Table 7.3.1-8B: CSI-RS-ResourceMapping for BM (Id)

Derivation Path: Table 4.6.3-45

Information Element

Value/remark

Comment

Condition

CSI-RS-ResourceMapping ::= SEQUENCE {

frequencyDomainAllocation CHOICE {

row1

0001

}

nrofPorts

p1

firstOFDMSymbolInTimeDomain

6

Id = 0

10

Id = 1

cdm-Type

noCDM

density CHOICE {

three

NULL

}

freqBand

CSI-FrequencyOccupation-RRM

}

CSI-RS-ResourceMapping for ZP-CSI-RS

Table 7.3.1-8C: CSI-RS-ResourceMapping-ZP-CSI-RS

Derivation Path: Table 4.6.3-45

Information Element

Value/remark

Comment

Condition

CSI-RS-ResourceMapping ::= SEQUENCE {

frequencyDomainAllocation CHOICE {

row4

100

k0 = 8

}

nrofPorts

p4

firstOFDMSymbolInTimeDomain

4

cdm-Type

fd-CDM2

density CHOICE {

one

NULL

}

freqBand

CSI-FrequencyOccupation-RRM

}

CSI-ResourcePeriodicityAndOffset for TRS

Table 7.3.1-9: CSI-ResourcePeriodicityAndOffset for TRS(Id)

Derivation Path: Table 4.6.3-43

Information Element

Value/remark

Comment

Condition

CSI-ResourcePeriodicityAndOffset ::= CHOICE {

slots80

40

(Id = 1 or 2) AND SCS120

41

(Id = 3 or 4) AND SCS120

slots40

20

Periodicity 40 slots and offset 20 for CSI-RS resource 1 and 2

(Id = 1 or 2) AND SCS30

21

Periodicity 40 slots and offset 21 for CSI-RS resource 3 and 4

(Id = 3 or 4) AND SCS30

slots20

10

Periodicity 20 slots and offset 10 for CSI-RS resource 1 and 2

(Id = 1 or 2) AND SCS15

11

Periodicity 20 slots and offset 11 for CSI-RS resource 3 and 4

(Id = 3 or 4) AND SCS15

}

CSI-ResourcePeriodicityAndOffset for CSI

Table 7.3.1-9A: CSI-ResourcePeriodicityAndOffset for CSI

Derivation Path: Table 4.6.3-43

Information Element

Value/remark

Comment

Condition

CSI-ResourcePeriodicityAndOffset ::= CHOICE {

slots5

1

SCS15

slots10

2

SCS30

slots40

8

SCS120

}

CSI-ResourcePeriodicityAndOffset for BM

Table 7.3.1-9B: CSI-ResourcePeriodicityAndOffset for BM

Derivation Path: Table 4.6.3-43

Information Element

Value/remark

Comment

Condition

CSI-ResourcePeriodicityAndOffset ::= CHOICE {

slots10

1

SCS15

slots20

2

SCS30

slots80

16

SCS120

}

CSI-FrequencyOccupation

Table 7.3.1-10: CSI-FrequencyOccupation-RRM

Derivation Path: Table 4.6.3-33

Information Element

Value/remark

Comment

Condition

CSI-FrequencyOccupation ::= SEQUENCE {

startingRB

4*floor(n/4)

n is the start RB of active BWP

floor() means rounding down to the nearest integer

startingRB can only be multiple of 4

nrofRBs

max(4*ceil(n/4-floor(n/4)+m/4),24)

m is the bandwidth of active BWP

ceil() means rounding up to the nearest integer

Bandwidth of CSI-RS used in RRM test is required to be same as active BWP according to 38.133.

nrofRBs shall be no less than 24 and shall be multiple of 4

}

NZP-CSI-RS-ResourceSet for TRS

Table 7.3.1-11: NZP-CSI-RS-ResourceSet for TRS

Derivation Path: Table 4.6.3-87 with Condition TRS

Information Element

Value/remark

Comment

Condition

NZP-CSI-RS-Resource ::= SEQUENCE {

nzp_CSI_ResourceSetId

NZP-CSI-RS-ResourceSetId-TRS

NZP-CSI-RS-ResourceSetId-TRS with condition SECOND_SET

SECOND_SET

nzp-CSI-RS-Resources SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-ResourcesPerSet)) OF NZP-CSI-RS-ResourceId {

4 entries

NZP-CSI-RS-ResourceId[1]

NZP-CSI-RS-ResourceId for TRS(1)

entry 1

NZP-CSI-RS-ResourceId[2]

NZP-CSI-RS-ResourceId for TRS(2)

entry 2

NZP-CSI-RS-ResourceId[3]

NZP-CSI-RS-ResourceId for TRS(3)

entry 3

NZP-CSI-RS-ResourceId[4]

NZP-CSI-RS-ResourceId for TRS(4)

entry 4

}

nzp-CSI-RS-Resources SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-ResourcesPerSet)) OF NZP-CSI-RS-ResourceId {

4 entries

SECOND_SET

NZP-CSI-RS-ResourceId[1]

NZP-CSI-RS-ResourceId for TRS(1) with condition SECOND_SET

entry 1

NZP-CSI-RS-ResourceId[2]

NZP-CSI-RS-ResourceId for TRS(2) with condition SECOND_SET

entry 2

NZP-CSI-RS-ResourceId[3]

NZP-CSI-RS-ResourceId for TRS(3) with condition SECOND_SET

entry 3

NZP-CSI-RS-ResourceId[4]

NZP-CSI-RS-ResourceId for TRS(4) with condition SECOND_SET

entry 4

}

}

Condition

Explanation

SECOND_SET

For the second TRS resource set configured in test, only applies to FR2 test

NZP-CSI-RS-ResourceSet for CSI

Table 7.3.1-11A: NZP-CSI-RS-ResourceSet for CSI

Derivation Path: Table 4.6.3-87

Information Element

Value/remark

Comment

Condition

NZP-CSI-RS-Resource ::= SEQUENCE {

nzp_CSI_ResourceSetId

NZP-CSI-RS-ResourceSetId-CSI

nzp-CSI-RS-Resources SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-ResourcesPerSet)) OF NZP-CSI-RS-ResourceId {

1 entry

NZP-CSI-RS-ResourceId[1]

NZP-CSI-RS-ResourceId for CSI

entry 1

}

repetition

Not present

}

NZP-CSI-RS-ResourceSet for BM

Table 7.3.1-11B: NZP-CSI-RS-ResourceSet for BM

Derivation Path: Table 4.6.3-87

Information Element

Value/remark

Comment

Condition

NZP-CSI-RS-ResourceSet ::= SEQUENCE {

nzp-CSI-ResourceSetId

NZP-CSI-RS-ResourceSetId-BM

NZP-CSI-RS-ResourceSetId-BM with condition APERIODIC

APERIODIC

nzp-CSI-RS-Resources SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-ResourcesPerSet)) OF NZP-CSI-RS-ResourceId {

2 entries

NZP-CSI-RS-ResourceId[1]

NZP-CSI-RS-ResourceId for BM (0)

entry 1

NZP-CSI-RS-ResourceId for BM (0) with condition APERIODIC

APERIODIC

NZP-CSI-RS-ResourceId[2]

NZP-CSI-RS-ResourceId for BM (1)

entry 2

NZP-CSI-RS-ResourceId for BM (1) with condition APERIODIC

APERIODIC

}

aperiodicTriggeringOffset

4

APERIODIC

}

Condition

Explanation

APERIODIC

For apeiodic CSI-RS resources

NZP-CSI-RS-ResourceSetId for TRS

Table 7.3.1-11C: NZP-CSI-RS-ResourceSetId-TRS

Derivation Path: Table 4.6.3-88

Information Element

Value/remark

Comment

Condition

NZP-CSI-RS-ResourceSetId

n

n is the first NZP-CSI-RS-ResourceSetId allocated for TRS resource set.

Value of n is left to internal implementation

n+1

SECOND_SET

Condition

Explanation

SECOND_SET

For the second TRS resource set configured in test, only applies to FR2 test

NZP-CSI-RS-ResourceSetId for CSI

Table 7.3.1-11D: NZP-CSI-RS-ResourceSetId-CSI

Derivation Path: Table 4.6.3-88

Information Element

Value/remark

Comment

Condition

NZP-CSI-RS-ResourceSetId

n

n is the NZP-CSI-RS-ResourceSetId allocated for resource set of CSI-RS for CSI reporting.

Value of n is left to internal implementation

NZP-CSI-RS-ResourceSetId for BM

Table 7.3.1-11E: NZP-CSI-RS-ResourceSetId-BM

Derivation Path: Table 4.6.3-88

Information Element

Value/remark

Comment

Condition

NZP-CSI-RS-ResourceSetId

n

n is the NZP-CSI-RS-ResourceSetId allocated for resource set of CSI-RS for BM.

Value of n is left to internal implementation

m

m is the NZP-CSI-RS-ResourceSetId allocated for resource set of aperiodic CSI-RS for BM.

Value of m is left to internal implementation

APERIODIC

Condition

Explanation

APERIODIC

For apeiodic CSI-RS resources

CSI-ResourceConfig for TRS

Table 7.3.1-12: CSI-ResourceConfig for TRS

Derivation Path: TS 38.508-1 Table 4.6.3-41

Information Element

Value/remark

Comment

Condition

CSI-ResourceConfig ::= SEQUENCE {

csi-ResourceConfigId

CSI-ResourceConfigId-TRS

csi-RS-ResourceSetList CHOICE {

nzp-CSI-RS-SSB SEQUENCE {

nzp-CSI-RS-ResourceSetList SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-ResourceSetsPerConfig)) OF NZP-CSI-RS-ResourceSetId {

1 entry

NZP-CSI-RS-ResourceSetId[1]

NZP-CSI-RS-ResourceSetId-TRS

}

nzp-CSI-RS-ResourceSetList SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-ResourceSetsPerConfig)) OF NZP-CSI-RS-ResourceSetId {

2 entries

SECOND_SET

NZP-CSI-RS-ResourceSetId[1]

NZP-CSI-RS-ResourceSetId-TRS

entry 1

NZP-CSI-RS-ResourceSetId[2]

NZP-CSI-RS-ResourceSetId-TRS with condition SECOND_SET

entry 2

}

}

bwp-Id

BWP-Id of active BWP

}

}

Condition

Explanation

SECOND_SET

For the second resource set for TRS configured in test, only applies to FR2 test

CSI-ResourceConfig for CSI

Table 7.3.1-12A: CSI-ResourceConfig for CSI

Derivation Path: TS 38.508-1 Table 4.6.3-41

Information Element

Value/remark

Comment

Condition

CSI-ResourceConfig ::= SEQUENCE {

csi-ResourceConfigId

CSI-ResourceConfigId-CSI

csi-RS-ResourceSetList CHOICE {

nzp-CSI-RS-SSB SEQUENCE {

nzp-CSI-RS-ResourceSetList SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-ResourceSetsPerConfig)) OF NZP-CSI-RS-ResourceSetId {

1 entry

NZP-CSI-RS-ResourceSetId[1]

NZP-CSI-RS-ResourceSetId-CSI

entry 1

}

}

}

bwp-Id

BWP-Id of active BWP

}

CSI-ResourceConfig for BM

Table 7.3.1-12B: CSI-ResourceConfig for BM

Derivation Path: Table 4.6.3-41

Information Element

Value/remark

Comment

Condition

CSI-ResourceConfig ::= SEQUENCE {

csi-ResourceConfigId

CSI-ResourceConfigId-BM

CSI-ResourceConfigId-BM with condition APERIODIC

APERIODIC

csi-RS-ResourceSetList CHOICE {

nzp-CSI-RS-SSB SEQUENCE {

nzp-CSI-RS-ResourceSetList SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-ResourceSetsPerConfig)) OF NZP-CSI-RS-ResourceSetId {

1 entry

NZP-CSI-RS-ResourceSetId[1]

NZP-CSI-RS-ResourceSetId-BM

NZP-CSI-RS-ResourceSetId-BM with condition APERIODIC

APERIODIC

}

}

}

bwp-Id

BWP-Id of active BWP

resourceType

aperiodic

APERIODIC

periodic

PERIODIC

}

Condition

Explanation

APERIODIC

For apeiodic CSI-RS resources

PERIODIC

For periodic CSI-RS resources

CSI-ResourceConfig for CSI-IM

Table 7.3.1-12BA: CSI-ResourceConfig for CSI-IM

Derivation Path: Table 4.6.3-41

Information Element

Value/remark

Comment

Condition

CSI-ResourceConfig ::= SEQUENCE {

csi-ResourceConfigId

CSI-ResourceConfigId-CSI-IM

csi-RS-ResourceSetList CHOICE {

csi-IM-ResourceSetList SEQUENCE (SIZE (1..maxNrofCSI-IM-ResourceSetsPerConfig)) OF CSI-IM-ResourceSetId {

1 entry

CSI-IM-ResourceSetId[1]

CSI-IM-ResourceSetId-RRM

entry 1

}

}

bwp-Id

BWP-Id

resourceType

periodic

}

CSI-ResourceConfigId for TRS

Table 7.3.1-12C: CSI-ResourceConfigId-TRS

Derivation Path: Table 4.6.3-42

Information Element

Value/remark

Comment

Condition

CSI-ResourceConfigId

n

n is the CSI-ResourceConfigId allocated for resource config of TRS.

Value of n is left to internal implementation

CSI-ResourceConfigId for CSI

Table 7.3.1-12D: CSI-ResourceConfigId-CSI

Derivation Path: Table 4.6.3-42

Information Element

Value/remark

Comment

Condition

CSI-ResourceConfigId

n

n is the CSI-ResourceConfigId allocated for resource config of CSI-RS for CSI reporting.

Value of n is left to internal implementation

CSI-ResourceConfigId for BM

Table 7.3.1-12E: CSI-ResourceConfigId-BM

Derivation Path: Table 4.6.3-42

Information Element

Value/remark

Comment

Condition

CSI-ResourceConfigId

n

n is the CSI-ResourceConfigId allocated for resource config of CSI-RS for BM.

Value of n is left to internal implementation

m

m is the CSI-ResourceConfigId allocated for resource config of aperiodic CSI-RS for BM.

Value of m is left to internal implementation

APERIODIC

Condition

Explanation

APERIODIC

For apeiodic CSI-RS resources

CSI-ResourceConfigId-CSI-IM

Table 7.3.1-12EA: CSI-ResourceConfigId-CSI-IM

Derivation Path: Table 4.6.3-42

Information Element

Value/remark

Comment

Condition

CSI-ResourceConfigId

n

n is the first CSI-ResourceConfigId allocated for CSI-IM resource configuration

Value of n is left to internal implementation

CSI-ReportConfig for CSI

Table 7.3.1-12F: CSI-ReportConfig for CSI

Derivation Path: Table 4.6.3-39

Information Element

Value/remark

Comment

Condition

CSI-ReportConfig ::= SEQUENCE {

reportConfigId

CSI-ReportConfigId-CSI

CSI-ReportConfigId-CSI with condition SCELL_CSI_ON_SPCELL

SCELL_CSI_ON_SPCELL

carrier

Not present

indicates the same serving cell as this report configuration

ServCellIndex of the SCell

SCELL_CSI_ON_SPCELL

resourcesForChannelMeasurement

CSI-ResourceConfigId-CSI

csi-IM-ResourcesForInterference

CSI-ResourceConfigId-CSI-IM

nzp-CSI-RS-ResourcesForInterference

Not present

reportConfigType CHOICE {

periodic SEQUENCE {

reportSlotConfig CHOICE {

slots5

2

SCS15

slots10

4

SCS30

slots40

4

SCS120

}

pucch-CSI-ResourceList SEQUENCE (SIZE (1..maxNrofBWPs)) OF PUCCH-CSI-Resource {

1 entry

PUCCH-CSI-Resource [1] SEQUENCE {

entry 1

uplinkBandwidthPartId

BWP-Id of active UL BWP

pucch-Resource

8

The first format 2 PUCCH resource configured in Table 4.6.3-112 is used

8

The first format 2 PUCCH resource configured in Table 4.6.3-112 is used

SCELL_CSI_ON_SPCELL

}

}

}

}

reportQuantity CHOICE {

cri-RI-PMI-CQI

null

}

codebookConfig

CodebookConfig-CSI

}

Condition

Explanation

SCELL_CSI_ON_SPCELL

For SCell CSI reporting on NR SpCell

CSI-ReportConfig for BM

Table 7.3.1-12G: CSI-ReportConfig for BM

Derivation Path: Table 4.6.3-39

Information Element

Value/remark

Comment

Condition

CSI-ReportConfig ::= SEQUENCE {

reportConfigId

CSI-ReportConfigId-BM

CSI-ReportConfigId-BM with condition APERIODIC

APERIODIC

carrier

Not present

resourcesForChannelMeasurement

CSI-ResourceConfigId-BM

CSI-ResourceConfigId-BM with condition APERIODIC

APERIODIC

csi-IM-ResourcesForInterference

Not present

nzp-CSI-RS-ResourcesForInterference

Not present

reportConfigType CHOICE {

periodic

reportSlotConfig ::= CHOICE {

slots80

2

SCS15

slots80

4

SCS30 OR SCS120

}

pucch-CSI-ResourceList SEQUENCE (SIZE (1..maxNrofBWPs)) OF{

PUCCH_CSI_Resource[0] SEQUENCE {

uplinkBandwidthPartId

BWP-Id

pucch_Resource

9

}

}

}

aperiodic SEQUENCE {

APERIODIC

reportSlotOffsetList SEQUENCE (SIZE (1..maxNrofUL-Allocations)) OF {

1 entry

INTEGER[1]

8

}

}

reportQuantity CHOICE {

cri-RSRP

NULL

}

codebookConfig

Not present

}

Condition

Explanation

APERIODIC

For aperiodic CSI-RS resources

CSI-ReportConfigId for CSI

Table 7.3.1-12H: CSI-ReportConfigId-CSI

Derivation Path: Table 4.6.3-40

Information Element

Value/remark

Comment

Condition

CSI-ReportConfigId

n

n is the CSI-ReportConfigId allocated for report config of CSI-RS for CSI.

Value of n is left to internal implementation

m

m is the CSI-ReportConfigId allocated for report config of SCell CSI on SpCell.

Value of m is left to internal implementation

SCELL_CSI_ON_SPCELL

Condition

Explanation

SCELL_CSI_ON_SPCELL

For SCell CSI reporting on NR SpCell

CSI-ReportConfigId for BM

Table 7.3.1-12I: CSI-ReportConfigId-BM

Derivation Path: Table 4.6.3-40

Information Element

Value/remark

Comment

Condition

CSI-ReportConfigId

n

n is the CSI-ReportConfigId allocated for report config of CSI-RS for BM.

Value of n is left to internal implementation

m

m is the CSI-ReportConfigId allocated for report config of aperiodic CSI-RS for BM.

Value of m is left to internal implementation

APERIODIC

Condition

Explanation

APERIODIC

For apeiodic CSI-RS resources

CSI-AperiodicTriggerStateList

Table 7.3.1-12J: CSI-AperiodicTriggerStateList

Derivation Path: Table 4.6.3-32

Information Element

Value/remark

Comment

Condition

CSI-AperiodicTriggerStateList ::= SEQUENCE (SIZE (1..maxNrOfCSI-AperiodicTriggers)) OF SEQUENCE {

1 entry

associatedReportConfigInfoList[1] SEQUENCE (SIZE(1..maxNrofReportConfigPerAperiodicTrigger)) OF SEQUENCE {

1 entry

reportConfigId[1]

CSI-ReportConfigId-BM with condition APERIODIC

resourcesForChannel[1] CHOICE {

nzp-CSI-RS SEQUENCE {

resourceSet

NZP-CSI-RS-ResourceSetId-BM with condition APERIODIC

qcl-info SEQUENCE (SIZE(1..maxNrofAP-CSI-RS-ResourcesPerSet)) OF {

2 entries

TCI-StateId[1]

TCI-StateId-RRM(0)

QCL Type C+D to SSB #0

TCI-StateId[2]

TCI-StateId-RRM(1)

QCL Type C+D to SSB #1

}

}

}

csi-IM-ResourcesForInterference[1]

Not present

nzp-CSI-RS-ResourcesForInterference[1]

Not present

}

}

RACH-ConfigCommon

Table 7.3.1-13: RACH-ConfigCommon

Derivation Path: TS 38.508-1 Table 4.6.3-128

Information Element

Value/remark

Comment

Condition

RACH-ConfigCommon::= SEQUENCE {

rach-ConfigGeneric

RACH-ConfigGeneric

totalNumberOfRA-Preambles

48

ssb-perRACH-OccasionAndCB-PreamblesPerSSB CHOICE {

oneFourth

n48

}

groupBconfigured

Not present

ra-ContentionResolutionTimer

sf48

rsrp-ThresholdSSB

51

rsrp-ThresholdSSB-SUL

Not present

prach-RootSequenceIndex CHOICE {

l139

0

}

msg1-SubcarrierSpacing

SubcarrierSpacing

restrictedSetConfig

unrestrictedSet

msg3-transformPrecoder

Not present

transform precoding is disabled for Msg3 PUSCH transmission and any PUSCH transmission scheduled with DCI format 0_0

}

RACH-ConfigGeneric

Table 7.3.1-14: RACH-ConfigGeneric

Derivation Path: TS 38.508-1 Table 4.6.3-130

Information Element

Value/remark

Comment

Condition

RACH-ConfigGeneric ::= SEQUENCE {

prach-ConfigurationIndex

102

FR1

190

FR2

msg1-FDM

one

msg1-FrequencyStart

0

zeroCorrelationZoneConfig

11

preambleReceivedTargetPower

-120

preambleTransMax

n6

n200

PRACH.4 FR1 or PRACH.4 FR2

powerRampingStep

dB2

ra-ResponseWindow

sl10

sl1

PRACH.4 FR1 or

sl40

PRACH.4 FR2

}

Condition

Explanation

PRACH.4 FR1

When PRACH reference configuration PRACH.4 FR1 is used in test case

PRACH.4 FR2

When PRACH reference configuration PRACH.4 FR2 is used in test case

– ControlResourceSet

Table 7.3.1-15: ControlResourceSet

Derivation Path: Table 4.6.3-28

Information Element

Value/remark

Comment

Condition

ControlResourceSet ::= SEQUENCE {

controlResourceSetId

ControlResourceSetId

frequencyDomainResources

11111111 00000000 00000000 00000000 00000000 00000

CCR.3.7 OR SCS240

duration

1

CCR.3.x

cce-REG-MappingType CHOICE {

interleaved ::= SEQUENCE {

CCR.X.Y

reg-BundleSize

n6

interleaverSize

n2

shiftIndex

0

}

tci-StatesPDCCH-ToAddList

Not present

tci-StatesPDCCH-ToAddList SEQUENCE(SIZE (1..maxNrofTCI-StatesPDCCH)) OF TCI-StateId {

1 entry

TCI-StateId[1]

TCI-StateId-RRM(2)

TCI State #2, QCLed to TRS resource #4 in the first resource set

entry 1

TRS

}

}

Condition

Explanation

CCR.x.y

Refers to CCR.x.y as defined in A.1.3 of TS 38.533 [18]

TRS

When at least one TRS resource set is configured.

– SchedulingRequestResourceConfig

Table 7.3.1-16: SchedulingRequestResourceConfig

Derivation Path: Table 4.6.3-157

Information Element

Value/remark

Comment

Condition

SchedulingRequestResourceConfig ::= SEQUENCE {

periodicityAndOffset CHOICE {

sl10

7

With SCS = kHz15 results in repetition every 10 ms

SCS_15kHz

sl20

7

With SCS = kHz30 results in repetition every 10 ms

SCS_30kHz

}

}

Condition

Explanation

SCS_15kHz

SCS=15kHz for frequency of the cell according to clause 6.2.3 for signalling test cases and clause 4.3.1 otherwise

SCS_30kHz

SCS=30kHz for frequency of the cell according to clause 6.2.3 for signalling test cases and clause 4.3.1 otherwise

– SearchSpace

Table 7.3.1-17: SearchSpace

Derivation Path: Table 4.6.3-162

Information Element

Value/remark

Comment

Condition

SearchSpace ::= SEQUENCE {

monitoringSlotPeriodicityAndOffset CHOICE {

sl10

1

SISS

sl160

0

(CCR.3.1 OR CCR.3.2 OR CCR.3.4 OR CCR.3.5 OR CCR.3.7) AND NOT_CONT_PDCCH

80

(CCR.3.3 OR CCR.3.6) AND NOT_CONT_PDCCH

}

monitoringSymbolsWithinSlot

11000000000000

(CCR.3.1 OR CCR.3.3 OR CCR.3.4 OR CCR.3.6 OR CCR.3.7) AND NOT_CONT_PDCCH

00110000000000

(CCR.3.2 OR CCR.3.5) AND NOT_CONT_PDCCH

}

Condition

Explanation

SISS

SearchSpace for SI

CCR.x.y

Refers to CCR.x.y as defined in A.1.3 of TS 38.533 [18]

NOT_CONT_PDCCH

The cell shall be configured with the default CCR.3.x settings and not transmit PDCCH continuously

– PDSCH-Config

Table 7.3.1-18: PDSCH-Config

Derivation Path: Table 4.6.3-100

Information Element

Value/remark

Comment

Condition

PDSCH-Config ::= SEQUENCE {

tci-StatesToAddModList SEQUENCE(SIZE (1.. maxNrofTCI-States)) OF TCI-State {

1+n1+n2+n3 entries

n1 = 1 if SSB configuration used in test case contains two SSBs in a burst, n1 = 0 otherwise

n2 = 1 if TRS is configured in test case, n1 = 0 otherwise

n3 = 1 if two resource sets of TRS are configured in test case, n3 = 0 otherwise

TCI-State[1]

TCI-State(0)

entry 1

QCLed to SSB index #0

TCI-State[k, k=2..1+n1]

TCI-State(1)

entry …

QCLed to SSB index #1

SECOND_SSB

TCI-State[k, k=2+n1..1+n1+n2]

TCI-State(2)

entry …

QCLed to TRS resource #4 in the first resource set

TRS

TCI-State[k, k=2+n1+n2..1+n1+n2+n3]

TCI-State(3)

entry …

QCLed to TRS resource #4 in the second resource set

SECOND_SET

}

zp-CSI-RS-ResourceToAddModList SEQUENCE (SIZE (1..maxNrofZP-CSI-RS-Resources)) OF ZP-CSI-RS-Resource {

1 entry

ZP-CSI-RS-Resource[1]

ZP-CSI-RS-Resource-RRM

entry 1

}

p-ZP-CSI-RS-ResourceSet CHOICE {

CSI

setup

ZP-CSI-RS-ResourceSet-RRM

}

}

Condition

Explanation

SECOND_SSB

SSB configuration used in test case contain two SSBs in a burst

TRS

One resource set for TRS is configured in test case

SECOND_SET

Two resource sets for TRS are configured in test case, only applies to FR2.

CSI

CSI-RS for CSI reporting are configured in test case

TCI-State

Table 7.3.1-19: TCI-State(Id)

Derivation Path: Table 4.6.3-190

Information Element

Value/remark

Comment

Condition

TCI-State ::= SEQUENCE {

tci-StateId

TCI-StateId-RRM(Id)

qcl-Type1 SEQUENCE {

bwp-Id

BWP-Id of the active BWP

Id = 2 or 3

referenceSignal CHOICE {

ssb

SSB-Index of SSB #0

Id = 0

SSB-Index of SSB #1

Id = 1

csi-rs

NZP-CSI-RS-ResourceId for TRS (4)

Id = 2

NZP-CSI-RS-ResourceId for TRS (4) with condition SECOND SET

Id = 3

}

qcl-Type

typeC

Id = 0 or 1

typeA

Id = 2 or 3

}

qcl-Type2

Not present

qcl-Type2 SEQUENCE {

FR2

cell

Not present

bwp-Id

Not present

Id = 0 or 1

BWP-Id of the active BWP

Id = 2 or 3

referenceSignal CHOICE {

ssb

SSB-Index of SSB #0

Id = 0

SSB-Index of SSB #1

Id = 1

csi-rs

NZP-CSI-RS-ResourceId for TRS (4)

Id = 2

NZP-CSI-RS-ResourceId for TRS (4) with condition SECOND SET

Id = 3

}

qcl-Type

typeD

}

}

TCI-StateId

Table 7.3.1-20: TCI-StateId(Id)

Derivation Path: Table 4.6.3-191

Information Element

Value/remark

Comment

Condition

TCI-StateId

n+Id

n is the first TCI-StateId allocated for TCI-State configured in RRM test. Value of n is left to internal implementation

Id = 0,1,2,3

PUSCH-Config

Table 7.3.1-21: PUSCH-Config

Derivation Path: Table 4.6.3-118

Information Element

Value/remark

Comment

Condition

PUSCH-Config ::= SEQUENCE {

pusch-TimeDomainAllocationList CHOICE {

APERIODIC

setup

PUSCH-TimeDomainResourceAllocationList-BM

}

}

}

Condition

Explanation

APERIODIC

For apeiodic CSI-RS resources

PUSCH-TimeDomainResourceAllocationList

Table 7.3.1-22: PUSCH-TimeDomainResourceAllocationList-BM

Derivation Path: Table 4.6.3-122

Information Element

Value/remark

Comment

Condition

PUSCH-TimeDomainResourceAllocationList ::= SEQUENCE (SIZE(1..maxNrofUL-Allocations)) OF PUSCH-TimeDomainResourceAllocation {

1 entriy

same number of entries as reportSlotOffsetList in Table 7.3.1-12G

PUSCH-TimeDomainResourceAllocation[1] SEQUENCE {

entry 1

k2

4

Same with k2 configrued in reportSlotOffsetList in Table 7.3.1-12G

mappingType

typeA

startSymbolAndLength

27

Start symbol(S)=0, Length(L)=14

}

}

– ServingCellConfig

Table 7.3.1-23: ServingCellConfig

Derivation Path: Table 4.6.3-167

Information Element

Value/remark

Comment

Condition

ServingCellConfig ::= SEQUENCE {

csi-MeasConfig CHOICE {

setup

csi-MeasConfig

}

CSI-IM-Resource-RRM

Table 7.3.1-24: CSI-IM-Resource-RRM

Derivation Path: Table 4.6.3-34

Information Element

Value/remark

Comment

Condition

CSI-IM-Resource ::= SEQUENCE {

csi-IM-ResourceId

CSI-IM-ResourceId-RRM

csi-IM-ResourceElementPattern CHOICE {

pattern1 SEQUENCE {

subcarrierLocation-p1

s8

symbolLocation-p1

4

}

}

freqBand

CSI-FrequencyOccupation-RRM

periodicityAndOffset

CSI-ResourcePeriodicityAndOffset for CSI

}

CSI-IM-ResourceId-RRM

Table 7.3.1-25: CSI-IM-ResourceId-RRM

Derivation Path: Table 4.6.3-35

Information Element

Value/remark

Comment

Condition

CSI-IM-ResourceId

n

n is the first CSI-IM-ResourceId allocated for CSI-IM resource.

Value of n is left to internal implementation

CSI-IM-ResourceSet-RRM

Table 7.3.1-26: CSI-IM-ResourceSet-RRM

Derivation Path: Table 4.6.3-36

Information Element

Value/remark

Comment

Condition

CSI-IM-ResourceSet ::= SEQUENCE {

csi-IM-ResourceSetId

CSI-IM-ResourceSetId-RRM

csi-IM-Resources SEQUENCE (SIZE (1..maxNrofCSI-IM-ResourcesPerSet)) OF CSI-IM-ResourceId {

1 entry

CSI-IM-ResourceId[1]

CSI-IM-ResourceId-RRM

entry 1

}

}

CSI-IM-ResourceSetId-RRM

Table 7.3.1-27: CSI-IM-ResourceSetId-RRM

Derivation Path: Table 4.6.3-37

Information Element

Value/remark

Comment

Condition

CSI-IM-ResourceSetId

n

n is the first CSI-IM-ResourceSetId allocated for CSI-IM resource set.

Value of n is left to internal implementation

SSB-Index

Table 7.3.1-28: SSB-Index

Derivation Path: TS 38.331 [6], clause 6.3.2

Information Element

Value/remark

Comment

Condition

SSB-Index

0

1

SECOND_SSB

Condition

Explanation

SECOND_SSB

SSB configuration used in test case contain two SSBs in a burst

CSI-SSB-ResourceSet

Table 7.3.1-29: CSI-SSB-ResourceSet

Derivation Path: Table 4.6.3-47

Information Element

Value/remark

Comment

Condition

CSI-SSB-ResourceSet ::= SEQUENCE {

csi-SSB-ResourceSetId

CSI-SSB-ResourceSetId

csi-SSB-Resource SEQUENCE (SIZE (1..maxNrofCSI-SSB-ResourcePerSet)) OF SSB-Index {

1 entry

SSB-Index[1]

SSB-Index

entry 1

}

csi-SSB-Resource SEQUENCE (SIZE (1..maxNrofCSI-SSB-ResourcePerSet)) OF SSB-Index {

2 entries

SECOND_SSB

SSB-Index[1]

SSB-Index

entry 1

SSB-Index[2]

SSB-Index with condition SECOND_SSB

entry 2

}

}

Condition

Explanation

SECOND_SSB

SSB configuration used in test case contain two SSBs in a burst

SCS-SpecificCarrier

Table 7.3.1-30: SCS-SpecificCarrier

Derivation Path: Table 4.6.3-160

Information Element

Value/remark

Comment

Condition

SCS-SpecificCarrier ::= SEQUENCE {

offsetToCarrier

offsetToCarrier as defined for the DL frequency of the cell

See 7.2.3.2

FR2 and DL_PointA

offsetToCarrier as defined for the UL frequency of the cell

See 7.2.3.2

FR2 and UL_PointA

offsetToCarrier as defined for the SL frequency

See 7.2.3.2

FR2 and SL_PointA

subcarrierSpacing

SubcarrierSpacing

carrierBandwidth

carrierBandwidth as defined for the frequency of the cell

See 7.2.3.2

FR2

24

Reduced_BW and SCS120 (for SSB)

48

Reduced_BW and SCS240 (for SSB)

}

Condition

Explanation

DL_PointA

IE absoluteFrequencyPointA for downlink

UL_PointA

IE absoluteFrequencyPointA for uplink

SL_PointA

IE absoluteFrequencyPointA for sidelink

Reduced_BW

Reduced RB allocation

SSB-ToMeasure

Table 7.3.1-31: SSB-ToMeasure

Derivation Path: TS 38.331 [6], clause 6.3.2

Information Element

Value/remark

Comment

Condition

SSB-ToMeasure ::= CHOICE {

shortBitmap

1000

2.3GHz<FREQ<=3GHz AND (FDD OR (TDD AND SCS15)) OR FREQ<=2.3GHZ

1100

SECOND_SSB AND (2.3GHz<FREQ<=3GHz AND (FDD OR (TDD AND SCS15)) OR FREQ<=2.3GHZ)

mediumBitmap

10000000

11000000

SECOND_SSB

longBitmap

10000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

FR2

11000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

FR2 AND SECOND_SSB

}

Condition

Explanation

FREQ<=2.3GHz

Frequency range <= 2.4GHz

2.3GHz<FREQ<=3GHz

Frequency range > 2.3GHz and <= 3GHz

FREQ>3GHz

Frequency range > 3GHz

SECOND_SSB

SSB configuration used in test case contain two SSBs in a burst

CodebookConfig-CSI

Table 7.3.1-32: CodebookConfig-CSI

Derivation Path: Table 4.6.3-25

Information Element

Value/remark

Comment

Condition

CodebookConfig ::= SEQUENCE {

codebookType CHOICE {

type1 SEQUENCE {

subType CHOICE {

typeI-SinglePanel SEQUENCE {

nrOfAntennaPorts CHOICE {

two SEQUENCE {

twoTX-CodebookSubsetRestriction

111111

}

}

}

}

}

}

}

PRB-Id

Table 7.3.1-33: PRB-Id

Derivation Path: TS 38.331 [6], clause 6.3.2

Information Element

Value/remark

Comment

Condition

PRB-Id

0

Set to value of the L_RBsnrofPRBs where L_RBs is the Bandwidth of the UL BWP specified in the test, and nrofPRBs is defined for the corresponding PUCCH-Resource (1 otherwise).

UL BWP configurations are defined in TS 38.533 Annex A.8.2

secondHopPRB

Condition

Explanation

secondHopPRB

The IE secondHopPRB in PUCCH-Resource is now set.

ZP-CSI-RS-Resource-RRM

Table 7.3.1-34: ZP-CSI-RS-Resource-RRM

Derivation Path: Table 4.6.3-204

Information Element

Value/remark

Comment

Condition

ZP-CSI-RS-Resource ::= SEQUENCE {

zp-CSI-RS-ResourceId

ZP-CSI-RS-ResourceId-RRM

resourceMapping

CSI-RS-ResourceMapping-ZP-CSI-RS

periodicityAndOffset

CSI-ResourcePeriodicityAndOffset for CSI

}

Table 7.3.1-35: ZP-CSI-RS-ResourceId-RRM

Derivation Path: Table 4.6.3-204A

Information Element

Value/remark

Comment

Condition

ZP-CSI-RS-ResourceId

n

n is the first ZP-CSI-RS-ResourceId allocated for ZP CSI-RS resource.

Value of n is left to internal implementation

ZP-CSI-RS-ResourceSet-RRM

Table 7.3.1-36: ZP-CSI-RS-ResourceSet-RRM

Derivation Path: Table 4.6.3-205

Information Element

Value/remark

Comment

Condition

ZP-CSI-RS-ResourceSet ::= SEQUENCE {

zp-CSI-RS-ResourceSetId

ZP-CSI-RS-ResourceSetId-RRM

zp-CSI-RS-ResourceIdList SEQUENCE (SIZE(1..maxNrofZP-CSI-RS-ResourcesPerSet)) OF ZP-CSI-RS-ResourceId {

1 entry

ZP-CSI-RS-ResourceId[1]

ZP-CSI-RS-ResourceId-RRM

entry 1

}

}

ZP-CSI-RS-ResourceSetId-RRM

Table 7.3.1-37: ZP-CSI-RS-ResourceSetId-RRM

Derivation Path: Table 4.6.3-206

Information Element

Value/remark

Comment

Condition

ZP-CSI-RS-ResourceSetId

n

n is the first ZP-CSI-RS-ResourceSetId allocated for ZP-CSI-RS resource set.

Value of n is left to internal implementation

7.3.2 Sidelink information elements for RRM

As defined in clause 4.6.6 with the following exceptions:

SL-BWP-ConfigCommon

Table 7.3.2-1: SL-BWP-ConfigCommon

Derivation Path: Table 4.6.6-2

Information Element

Value/remark

Comment

Condition

SL-BWP-ConfigCommon-r16 ::= SEQUENCE {

sl-BWP-PoolConfigCommon-r16

SL-BWP-PoolConfigCommon-r16

Table 7.3.2-2

}

SL-BWP-PoolConfigCommon

Table 7.3.2-2: SL-BWP-PoolConfigCommon

Derivation Path: Table 4.6.6-4 with condition RXPOOL and SELECTED

Information Element

Value/remark

Comment

Condition

SL-BWP-PoolConfigCommon-r16 ::= SEQUENCE {

sl-RxPool-r16 SEQUENCE (SIZE (1..maxNrofRXPool-r16)) OF SL-ResourcePool-r16 {

1 entry

SL-ResourcePool-r16[1]

SL-ResourcePool-r16

entry 1

Table 7.3.2-3

}

sl-TxPoolSelectedNormal-r16 SEQUENCE (SIZE (1..maxNrofTXPool-r16)) OF SL-ResourcePoolConfig-r16 {

1 entry

SL-ResourcePoolConfig-r16[1] SEQUENCE {

entry 1

sl-ResourcePool-r16

SL-ResourcePool-r16

Table 7.3.2-3

}

}

}

SL-ResourcePool

Table 7.3.2-3: SL-ResourcePool

Derivation Path: Table 4.6.6-25

Information Element

Value/remark

Comment

Condition

SL-ResourcePool-r16 ::= SEQUENCE {

sl-NumSubchannel-r16

1

sl-UE-SelectedConfigRP-r16 SEQUENCE {

sl-ThresPSSCH-RSRP-List-r16

Set according to the configuration in specific test cases

sl-SelectionWindowList-r16 SEQUENCE (SIZE (8)) OF SL-SelectionWindowConfig-r16 {

8 entries

SL-SelectionWindowConfig-r16[k, k=1..8] SEQUENCE {

entry k

sl-Priority-r16

k

sl-SelectionWindow-r16

n20

}

}

}

sl-PreemptionEnable-r16

enabled

sl-MinMaxMCS-List-r16 SEQUENCE (SIZE (1..3)) OF SL-MinMaxMCS-Config-r16 {

1 entry

SL-MinMaxMCS-Config-r16[1] SEQUENCE {

entry 1

sl-MCS-Table-r16

qam64

sl-MinMCS-PSSCH-r16

0

sl-MaxMCS-PSSCH-r16

28

}

sl-TimeResource-r16

11111111111111111111

}

SL-PSSCH-TxConfigList

Table 7.3.2-4: SL-PSSCH-TxConfigList

Derivation Path: Table 4.6.6-19

Information Element

Value/remark

Comment

Condition

SL-PSSCH-TxConfigList-r16 ::= SEQUENCE (SIZE (1..maxPSSCH-TxConfig-r16)) OF SL-PSSCH-TxConfig-r16 {

1 entry

sl-ThresUE-Speed-r16

kmph200

sl-ParametersAboveThres-r16 SEQUENCE {

sl-MaxSubchannelNumPSSCH-r16

1

sl-MaxTxTransNumPSSCH-r16

1

}

sl-ParametersBelowThres-r16 SEQUENCE {

sl-MinMCS-PSSCH-r16

4

sl-MaxMCS-PSSCH-r16

25

sl-MaxSubchannelNumPSSCH-r16

1

sl-MaxTxTransNumPSSCH-r16

1

}

}

SL-UE-SelectedConfig

Table 7.3.2-5: SL-UE-SelectedConfig

Derivation Path: Table 4.6.6-35

Information Element

Value/remark

Comment

Condition

SL-UE-SelectedConfig-r16 ::= SEQUENCE {

sl-PSSCH-TxConfigList-r16

SL-PSSCH-TxConfigList-r16

Table 7.3.2-4

sl-ProbResourceKeep-r16

v0dot8

sl-ReselectAfter-r16

n1

}

7.4 FFS

Void.

7.5 Common procedures for RRM testing

7.5.1 Procedure to configure SCC(s) for NR RRM CA testing

Same procedure as described in clause 5.5.1.

7.5.2 Procedure to configure SCC(s) for EN-DC RRM CA testing

Same procedure as described in clause 5.5.1.

Annex A (informative):
Connection Diagrams