4.4 Reference system configurations

38.508-13GPP5GSPart 1: Common test environmentRelease 17TSUser Equipment (UE) conformance specification

The reference system configurations specified in this sub clause apply to all test cases unless otherwise specified.

4.4.1 Simulated network scenarios

The simulated network scenarios will simulate UE operation in either standalone NR, standalone E-UTRA or in non-standalone NR and E-UTRA networks. For non-standalone case either the NR or the E-UTRA radio access acts as the master anchor node. For both standalone and non-standalone cases, the simulated networks may be single mode networks (FDD or TDD) or dual mode networks (FDD+TDD). For the standalone NR case the simulated networks may also be inter-RAT networks ((FDD or TDD) + (E-UTRA FDD or E-UTRA TDD or UTRA FDD).

Simulated network scenarios to be tested are listed in this sub clause.

NOTE 1: The number of cells specified does not necessarily correspond to the maximum number of resources to be configured simultaneously in test equipment. Please refer to clause 6.1 for such information.

NOTE 2: For NAS test cases see sub clause 6.3.2.

4.4.1.1 Standalone cell network scenarios

4.4.1.1.1 Standalone E-UTRA single cell and multi cell network scenarios

For standalone E-UTRA FDD or TDD single cell environment see TS 36.508 [2], clause 4.4.1.1.

For standalone E-UTRA FDD or TDD multi cell network scenarios see TS 36.508 [2], clause 4.4.1.2.

4.4.1.1.2 Standalone NR single cell network scenarios

For standalone NR FDD or TDD single cell environment, NR Cell 1 is used.

4.4.1.1.3 Standalone NR single mode multi cell network scenarios

For standalone NR FDD or TDD intra-frequency multi cell environment, NR Cell 1, NR Cell 2 and NR Cell 4 are used.

For standalone NR FDD or TDD inter-frequency multi cell environment, NR Cell 1, NR Cell 3 and NR Cell 6 are used.

For standalone NR FDD or TDD inter-band cell environment, NR Cell 1 and NR Cell 10 are used.

For standalone NR FDD or TDD multi tracking area intra-frequency multi cell environment, NR Cell 1 and NR Cell 11 are used.

For standalone NR FDD or TDD multi tracking area inter-frequency multi cell environment, NR Cell 1 and NR Cell 23 are used.

For standalone NR FDD or TDD multi PLMN inter-frequency multi cell environment, NR Cell 1, NR Cell 12, NR Cell 13 and NR Cell 14 are used.

4.4.1.1.4 Standalone NR dual mode multi cell network scenarios

For standalone NR FDD and TDD multi cell environment, NR Cell 1, NR Cell 10 and NR Cell 31 are used.

For standalone NR FDD and TDD multi PLMN multi cell environment, NR Cell 1, NR Cell 28, NR Cell 29 and NR Cell 30 are used.

In addition, standalone NR single mode multi cell network scenarios defined in clause 4.4.1.1.3 are combined with the dual mode scenarios defined in this clause when additional intra or inter-frequency cells are used.

4.4.1.1.5 Standalone NR 3GPP Inter-RAT network scenarios

For standalone NR FDD or TDD single cell with E-UTRA FDD, E-UTRA TDD or UTRA FDD single cell inter-RAT environment:

– NR Cell 1 is used for the NR cell; and

– Cell 1, as specified in TS 36.508 [2] clause 4.4.1.1, is used for the E-UTRA cell; or

– Cell 5, as specified in TS 36.508 [2] clause 4.4.2, is used for the UTRA cell.

For standalone NR FDD or TDD single cell with E-UTRA FDD or E-UTRA TDD multi cell inter-RAT environment:

– NR Cell 1 is used for the NR cell; and

– Cell 1, Cell 2 and Cell 4, as specified in TS 36.508 [2] clause 4.4.1.2, is used for the E-UTRA cell; and

4.4.1.2 Non-standalone cell network scenarios

4.4.1.2.1 Non-standalone E-UTRA single cell and NR single cell network scenarios

For non-standalone NR FDD or TDD single cell and E-UTRA FDD or TDD single cell environment:

– Cell 1, as specified in TS 36.508 [2] clause 4.4.1.1, is used for the E-UTRA cell; and

– NR Cell 1 is used for the NR cell.

4.4.1.2.2 Non-standalone E-UTRA single cell and NR single mode multi cell network scenarios

For non-standalone E-UTRA single cell and FDD or TDD NR intra-frequency single mode multi cell environment:

– Cell 1, as specified in TS 36.508 [2] clause 4.4.1.1, is used for the E-UTRA cell; and

– NR Cell 1, NR Cell 2 and NR Cell 4 are used for NR cells.

For non-standalone E-UTRA single cell and FDD or TDD NR inter-frequency single mode multi cell environment:

– Cell 1, as specified in TS 36.508 [2] clause 4.4.1.1, is used for the E-UTRA cell; and

– NR Cell 1, NR Cell 3 and NR Cell 6 are used for the NR cells.

For non-standalone E-UTRA single cell and FDD or TDD NR inter-band single mode multi cell environment:

– Cell 1, as specified in TS 36.508 [2] clause 4.4.1.1, is used for the E-UTRA cell; and

– NR Cell 1 and NR Cell 10 are used for the NR cells.

4.4.1.2.3 Non-standalone E-UTRA single mode multi cell and NR single mode multi cell network scenarios

For non-standalone E-UTRA intra-frequency single mode multi cell and FDD or TDD NR intra-frequency single mode multi cell environment:

– E-UTRA Cell 1, Cell 2 and Cell 4, as specified in TS 36.508 [2] clause 4.4.1.2, is used for the E-UTRA cell; and

– NR Cell 1, NR Cell 2 and NR Cell 4 are used for NR cells.

For non-standalone FDD or TDD E-UTRA intra-frequency single mode multi cell and FDD or TDD NR inter-frequency single mode multi cell environment:

– E-UTRA Cell 1, Cell 2 and Cell 4, as specified in TS 36.508 [2] clause 4.4.1.2, is used for the E-UTRA cell; and

– NR Cell 1, NR Cell 3 and NR Cell 6 are used for the NR cells.

For non-standalone FDD or TDD E-UTRA inter-frequency single mode multi cell and FDD or TDD NR inter-frequency single mode multi cell environment:

– E-UTRA Cell 1, Cell 3 and Cell 6, as specified in TS 36.508 [2] clause 4.4.1.2, is used for the E-UTRA cell; and

– NR Cell 1, NR Cell 3 and NR Cell 6 are used for the NR cells.

For non-standalone single E-UTRA cell and FDD or TDD NR inter-band single mode multi cell environment:

– E-UTRA Cell 1, Cell 2 and Cell 4, as specified in TS 36.508 [2] clause 4.4.1.2, is used for the E-UTRA cell; and

– NR Cell 1 and NR Cell 10 are used for the NR cells.

4.4.1.2.4 Non-standalone E-UTRA single cell and NR dual mode multi cell network scenarios

Editor’s note: It is FFS if the NR dual mode multi cell environment needs to include multiple E-UTRA cells in addition to the multiple NR cells.

For non-standalone single E-UTRA cell and FDD and TDD NR dual mode multi cell environment:

– Cell 1, as specified in TS 36.508 [2] clause 4.4.1.1, is used for the E-UTRA cell; and

– NR Cell 1, NR Cell 10 and NR Cell 31 are used for the NR cells.

In addition, standalone NR single mode multi cell network scenarios defined in clause 4.4.1.2.2 are combined with the dual mode scenarios defined in this clause when additional intra or inter-frequency NR cells are used.

4.4.1.3 Non-3GPP Accesss network scenarios

4.4.1.3.1 WLAN network scenario

For non-3GPP access over WLAN single cell environment Cell 27, Cell 27a and Cell 27b as specified in TS 36.508 [2] clauses 4.4.2 and 4.4.8 with condition ‘IMSoWLAN’ is used.

4.4.1.3.2 Bluetooth network scenario

For non-3GPP access over Bluetooth single cell environment Cell 40 and Cell 41, as specified in TS 36.508 [2] clauses 4.4.2.

4.4.2 Simulated cells

NOTE 1: For NAS test cases see clause 6.3.2.

NOTE 2: Test frequency and range defined in table 4.4.2-1 do not apply to TS 38.521-1, TS 38.521-2 and TS 38.521-3 test cases.

Test frequencies and simulated NR cells are defined in table 4.4.2-1. Test frequencies and simulated E-UTRA and UTRA cells are defined in TS 36.508 [2] table 4.4.2-1.

For NR cells, NRf1 is the default test frequency. For UTRA cells, f8 as specified in TS 36.508 [2] table 4.2.2-1 is the default test frequency. For E-UTRA cells, f1 as specified in TS 36.508 [2] table 4.2.2-1 is the default test frequency.

Default parameters for simulated NR cells are specified in table 4.4.2-2 and table 4.4.2-3.

Default parameters for simulated E-UTRA cells are specified in TS 36.508 [2] table 4.4.2-1A and table 4.4.2-2.

Default parameters for simulated UTRA cells are specified in TS 36.508 [2] clause 4.4.4.

Common parameters for NR simulated cells are specified in clauses 4.4.3.

Other cell specific parameters are specified in TS 36.508 [2] clause 4.4.3 to 4.4.7.

Table 4.4.2-1: Definition of test frequencies and simulated NR cells

Test frequency

RAT

Operating band

Range

Simulated NR cells

NRf1

NR

Operating band under test

Mid

(Note 1, Note 3

NR Cell 1, NR Cell 2, NR Cell 4, NR Cell 11, NR Cell 489

NRf2

NR

Operating band under test

High

(Note 1, Note 3)

NR Cell 3, NR Cell 12, NR Cell 23

NRf3

NR

Operating band under test

Low

(Note 1, Note 3)

NR Cell 6, NR Cell 13

NRf4

NR

Operating band under test

(Note 1)

NR Cell 14

NRf5

NR

Operating band for inter-band cells

Mid

(Note 1)

NR Cell 10, NR Cell 30, NR Cell 31

NRf6

NR

Operating band for inter-band cells

High

(Note 1)

NR Cell 28, NR Cell 29

NRf7

NR

Operating band for inter-band cells

Low

(Note 1)

NRf8

NR

Operating band for SDL cell

Mid

(Note 1)

NR Cell 32

NRf9

NR

Operating band for SUL cell

Mid

(Note 1)

NR Cell 33

NRf10

NR

Operating band for inter-band cells

Mid

(Note bb)

NR Cell 500

Note 1: For signalling test, see clause 6.2.3.

Note 2: Void.

Note 3: For RRM test with NR intra-band non-contiguous CA, the test frequencies for the set of non-contiguous component carriers are specified in clauses 4.3.1.1.4 for FR1 and in clause 4.3.1.2.4 for FR2 without any regard to range. Thus “Low”, “Mid” and “High” information in this table does not apply. Unless otherwise stated, test point with maximum Wgap is chosen.

Note 4: For signalling test with NR inter-band CA three bands only, the test band is different from the Operating band for NRf1 and the Operating band for NRf5.

Table 4.4.2-2: Default NR parameters for simulated NR cells

cell ID

NR Cell Identifier

Physical layer cell identity

PRACH-rootSequenceIndex FDD

PRACH-rootSequenceIndex TDD

SSB-Index2,3

gNB Identifier

Cell Identity

Note 1

Note 1

NR Cell 1

’00 0000 0000 0000 0000 0000 0001’B

’00 0000 0000’B

0

0

0

1

NR Cell 2

’00 0000 0000 0000 0000 0000 0001’B

’00 0000 0010’B

2

32

32

0

NR Cell 3

’00 0000 0000 0000 0000 0000 0010’B

’00 0000 0011’B

3

0

0

1

NR Cell 4

’00 0000 0000 0000 0000 0000 0011’B

’00 0000 0100’B

4

64

64

1

NR Cell 6

’00 0000 0000 0000 0000 0000 0100’B

’00 0000 0110’B

6

0

0

1

NR Cell 10

’00 0000 0000 0000 0000 0000 0101’B

’00 0000 1010’B

10

0

0

1

NR Cell 11

’00 0000 0000 0000 0000 0000 0110’B

’00 0000 1011’B

11

96

96

0

NR Cell 12

’00 0000 0000 0000 0000 0000 0010’B

’00 0000 1100’B

12

32

32

0

NR Cell 13

’00 0000 0000 0000 0000 0000 0100’B

’00 0000 1101’B

13

32

32

0

NR Cell 14

’00 0000 0000 0000 0000 0000 0111’B

’00 0000 1110’B

14

0

0

1

NR Cell 23

’00 0000 0000 0000 0000 0000 0110’B

’00 0001 0111’B

23

64

64

1

NR Cell 28

’00 0000 0000 0000 0000 0000 0010’B

’00 0001 1100’B

28

0

0

1

NR Cell 29

’00 0000 0000 0000 0000 0000 0100’B

’00 0001 1101’B

29

32

32

0

NR Cell 30

’00 0000 0000 0000 0000 0000 0111’B

’00 0001 1110’B

30

32

32

0

NR Cell 31

’00 0000 0000 0000 0000 0000 0110’B

’00 0001 1111’B

31

64

64

1

NR Cell 32

’00 0000 0000 0000 0000 0001’B

’00 0010 0000’B

32

1

NR Cell 33

’00 0000 0000 0000 0000 0001’B

’00 0010 0001’B

33

NR Cell 489

’00 0000 0000 0000 0000 0000 0001’B

’01 1110 1001’B

489

128

128

0

NR Cell 500

’00 0000 0000 0000 0000 0000 1000’B

’00 0000 0111’B

500

0

0

1

Note 1: To avoid collision of the preambles between intra-frequency cells, with the default zeroCorrelationZoneConfig value set to 15, the PRACH-rootSequenceIndex values have been separated by 32 root sequences per intra-frequency cell.

Note 2: This SSB-Index does not apply for RRM test cases in TS 38.533 [18]. RRM test cases shall use the SSB index defined in A.3 of TS 38.533 [18].

Note 3: For signalling test, simultaneous co-existence of active NR cells defined on the same frequency and same SSB-Index is not recommended due to the same timing used for intra-frequency NR cells in TS 38.523-3 [23].

Table 4.4.2-3: Default NAS parameters for simulated NR cells

cell ID

Tracking Area

TA# list

(Note 1)

5G-GUTI (Note 2)

TA#

PLMN

TAC

AMF Identifier

5G-TMSI

MCC

MNC

AMF region ID

AMF Set ID

AMF Pointer

NR Cell 1

TAI-1

(Note 3)

1

TAI-1

254

1

1

Arbitrarily selected according to TS 23.003 [26] clause 2.10

NR Cell 2

TAI-1

(Note 3)

1

TAI-1

254

1

1

NR Cell 3

TAI-1

(Note 3)

1

TAI-1

254

1

1

NR Cell 4

TAI-1

(Note 3)

1

TAI-1

254

1

1

NR Cell 6

TAI-1

(Note 3)

1

TAI-1

254

1

1

NR Cell 10

TAI-1

(Note 3)

1

TAI-1

254

1

1

NR Cell 11

TAI-2

(Note 3)

2

TAI-2

254

1

1

NR Cell 23

TAI-2

(Note 3)

2

TAI-2

254

1

1

NR Cell 12, NR Cell 28

TAI-3

002

11

1

TAI-3

253

1

1

NR Cell 13, NR Cell 29

TAI-4

003

21

1

TAI-4

252

1

1

NR Cell 14, NR Cell 30

TAI-5

004

31

1

TAI-5

251

1

1

NR Cell 31

TAI-2

(Note 3)

2

TAI-2

254

1

1

NR Cell 489

TAI-1

(Note 3)

1

TAI-1

254

1

1

NR Cell 500

TAI-1

(Note 3)

1

TAI-1

254

1

1

Note 1: The value(s) in the column TA# list indicates TAI(s) included in the response messages of the registration procedure (REGISTRATION ACCEPT) when the UE performs the registration procedure on a corresponding cell.

Note 2: The value in the column 5G-GUTI indicates 5G-GUTI included in the response messages of the registration procedure (REGISTRATION ACCEPT) when the UE performs the registration procedure on a corresponding cell.

Note 3: Set to the same Mobile Country Code and Mobile Network Code stored in EFIMSI on the test USIM card (subclause 4.9.3).

Table 4.4.2-4: Default parameters for simulated SNPN cells

cell ID

Network Identifier (NID)

Assignment mode (Note 1)

NID value

NR Cell 1

1

1

NR Cell 2

1

2

NR Cell 3

1

3

NR Cell 4

1

4

NR Cell 6

1

6

NR Cell 10

1

10

NR Cell 11

1

11

NR Cell 12

1

12

NR Cell 13

1

13

NR Cell 14

1

14

NR Cell 23

1

23

NR Cell 28

1

28

NR Cell 29

1

29

NR Cell 30

1

30

NR Cell 31

1

32

NR Cell 32

1

32

NR Cell 33

1

33

NR Cell 489

1

489

NR Cell 500

1

500

Note 1: As per TS 23.003 [26] clause 12.7.1, Network Identifier comprises of Assignment mode (one hexadecimal digit) and NID value (10 hexadecimal digits). Self-assignment NIDs are chosen by setting the assignment mode to value 1.

4.4.3 Common parameters for simulated NR cells

The parameters specified in this sub clause apply to the simulated NR cells in standalone NR and non-standalone network scenarios unless otherwise specified.

The common parameters for the simulated E-UTRA cells for standalone E-UTRA and non-standalone network scenarios are specified in TS 36.508 [2] clause 4.4.3 unless otherwise specified.

4.4.3.1 Common configurations of system information blocks

4.4.3.1.1 Combinations of system information blocks for E-UTRA standalone, EN-DC and NGEN-DC

The combination of system information blocks for standalone E-UTRA, EN-DC and NGEN-DC network scenarios are specified in TS 36.508 [2] clause 4.4.3.1.

For EN-DC and NGEN-DC network scenarios the SS shall in addition to broadcasting the E-UTRA system information blocks also broadcast the NR MIB on the NR cell(s).

4.4.3.1.2 Combinations of system information blocks for NR standalone and NE-DC

The combination of system information blocks required by a test case depends on the test case scenario. In this clause, several combinations of system information blocks are defined.

Regardless of the combination of system information blocks indicated as being used by a test case, the SS shall broadcast only the NR MIB on the NR Cell(s) configured on an SDL band.

For NE-DC network scenario the SS shall in addition to broadcasting the NR system information blocks also broadcast the E-UTRA system information combination 1 on the E-UTRA cell(s) as specified in TS 36.508 [2].

Combination NR-1 is the default combination which applies to the following test case scenarios:

– NR FDD single cell scenario except RRM test case scenarios

– NR TDD single cell scenario except RRM test case scenarios

– NR FDD inter-band DC component carriers cell scenario

– NR TDD inter-band DC component carriers cell scenario

– NR FDD and NR TDD inter-band DC component carriers cell scenario

Combination NR-2 applies to the following test case scenarios:

– NR FDD intra-frequency multi cell scenario

– NR TDD intra-frequency multi cell scenario

– NR FDD and NR TDD dual mode multi cell roaming scenario

– NR FDD single cell RRM test case scenario

– NR TDD single cell RRM test case scenario

Combination NR-3 applies to the following test case scenarios:

– NR FDD intra-frequency multi cell scenario with neighbouring cell related information

– NR TDD intra-frequency multi cell scenario with neighbouring cell related information

Combination NR-4 applies to the following test case scenarios:

– NR FDD inter-frequency multi cell scenario

– NR TDD inter-frequency multi cell scenario

– NR FDD inter-band multi cell scenario

– NR TDD inter-band multi cell scenario

– NR FDD and NR TDD dual mode multi cell non-roaming scenario

– NR FDD intra-band carrier aggregation component carriers cell scenario

– NR FDD inter-band carrier aggregation component carriers cell scenario

– NR TDD intra-band carrier aggregation component carriers cell scenario

– NR FDD and NR TDD inter-band carrier aggregation component carriers cell scenario

Combination NR-5 applies to the following test case scenarios:

– NR FDD intra-band carrier aggregation component carriers cell scenario + NR FDD intra-frequency neighbour.

– NR FDD inter-band carrier aggregation component carriers cell scenario+ NR FDD intra-frequency neighbour.

– NR TDD intra-band carrier aggregation component carriers cell scenario+ NR FDD intra-frequency neighbour.

– NR FDD and NR TDD inter-band carrier aggregation component carriers cell scenario+ NR FDD intra-frequency neighbour.

Combination NR-6 applies to the following test case scenarios:

– 3GPP inter-RAT NR FDD + E-UTRA FDD multi cell scenario

– 3GPP inter-RAT NR TDD + E-UTRA TDD multi cell scenario

– 3GPP inter-RAT NR TDD + E-UTRA FDD multi cell scenario

Combination NR-7 applies to the following test case scenarios:

– NR FDD inter-frequency + 3GPP inter-RAT E-UTRA multi-cell scenario

– NR TDD inter-frequency + 3GPP inter-RAT E-UTRA multi-cell scenario

Combination NR-8 applies to the following test case scenarios:

– NR FDD ETWS single cell scenario

– NR TDD ETWS single cell scenario

Combination NR-9 applies to the following test case scenarios:

– 3GPP NR FDD + CMAS single cell scenario

– 3GPP NR TDD + CMAS single cell scenario

Combination NR-10 applies to the following test case scenarios:

– 3GPP NR FDD + ETWS primary notification single cell scenario

– 3GPP NR TDD + ETWS primary notification single cell scenario

Combination NR-11 applies to the following test case scenarios:

– 3GPP NR FDD + ETWS secondary notification single cell scenario

– 3GPP NR TDD + ETWS secondary notification single cell scenario

Combination NR-12 applies to the following test case scenarios:

– 3GPP NR FDD + SNPN only single cell scenario

– 3GPP NR TDD + SNPN only single cell scenario

Combination NR-13 applies to the following test case scenarios:

– 3GPP NR FDD + CAG cell multi cell scenario

– 3GPP NR TDD + CAG cell multi cell scenario

Combination NR-14 applies to the following test case scenarios:

– 3GPP NR FDD single cell scenario + NR sidelink communication with or without network scheduling.

– 3GPP NR TDD single cell scenario + NR sidelink communication with or without network scheduling.

– 3GPP NR FDD intra-frequency multi cell scenario + NR sidelink communication with or without network scheduling.

– 3GPP NR TDD intra-frequency multi cell scenario + NR sidelink communication with or without network scheduling.

– 3GPP NR FDD inter-frequency multi cell scenario + NR sidelink communication with or without network scheduling.

– 3GPP NR TDD inter-frequency multi cell scenario + NR sidelink communication with or without network scheduling.

– 3GPP NR FDD inter-band multi cell scenario + NR sidelink communication with or without network scheduling.

– 3GPP NR TDD inter-band multi cell scenario + NR sidelink communication with or without network scheduling.

Combination NR-15 applies to the following test case scenarios:

– 3GPP NR FDD single cell scenario + positioning test case which require posSIBs.

– 3GPP NR TDD single cell scenario + positioning test case which require posSIBs.

Combination NR-16 applies to the following test case scenarios:

– 3GPP NR FDD intra-frequency multi cell scenario + positioning test case which require posSIBs.

– 3GPP NR TDD intra-frequency multi cell scenario + positioning test case which require posSIBs.

Combination NR-17 applies to the following test case scenarios:

– 3GPP NR FDD inter-frequency multi cell scenario + positioning test case which require posSIBs.

– 3GPP NR TDD inter-frequency multi cell scenario + positioning test case which require posSIBs.

Combination NR-18 applies to the following test case scenarios:

– 3GPP NR FDD inter-frequency multi cell scenario + idle/inactive measurements.

– 3GPP NR TDD inter-frequency multi cell scenario + idle/inactive measurements.

Combination NR-19 applies to the following test case scenarios:

– 3GPP NR FDD + Extended field in SI scenario

– 3GPP NR TDD + Extended field in SI scenario

Table 4.4.3.1.2-1: Combinations of system information blocks

System information block type

Combination No.

SIB1

SIB2

SIB3

SIB4

SIB5

SIB6

SIB7

SIB8

SIB9

SIB10

SIB11

SIB12

SIB13

SIB14

posSIBs

NR-1

X

NR-2

X

X

NR-3

X

X

X

NR-4

X

X

X

NR-5

X

X

X

X

NR-6

X

X

X

NR-7

X

X

X

X

NR-8

X

X

X

NR-9

X

X

NR-10

X

X

NR-11

X

X

NR-12

X

X

NR-13

X

X

X

NR-14

X

X

X

X

NR-15

X

X

NR-16

X

X

X

NR-17

X

X

X

X

NR-18

X

X

X

NR-19

X

X

X

4.4.3.1.3 Scheduling of system information blocks

The scheduling configurations for combinations of system information blocks are defined in the following tables. There is no scheduling information for combination NR-1.

Table 4.4.3.1.3-1: Scheduling for combination NR-2

Scheduling Information No.

Periodicity

[radio frames]

Mapping of system information blocks

1

32

SIB2

Table 4.4.3.1.3-2: Scheduling for combination NR-3

Scheduling Information No.

Periodicity

[radio frames]

Mapping of system information blocks

1

32

SIB2

2

64

SIB3

Table 4.4.3.1.3-3: Scheduling for combination NR-4

Scheduling Information No.

Periodicity

[radio frames]

Mapping of system information blocks

1

32

SIB2

2

64

SIB4

Table 4.4.3.1.3-4: Scheduling for combination NR-5

Scheduling Information No.

Periodicity

[radio frames]

Mapping of system information blocks

1

32

SIB2

2

64

SIB3

3

64

SIB4

Table 4.4.3.1.3-5: Scheduling for combination NR-6

Scheduling Information No.

Periodicity

[radio frames]

Mapping of system information blocks

1

32

SIB2

2

64

SIB5

Table 4.4.3.1.3-6: Scheduling for combination NR-7

Scheduling Information No.

Periodicity

[radio frames]

Mapping of system information blocks

1

32

SIB2

2

64

SIB4, SIB5

Table 4.4.3.1.3-7: Scheduling for combination NR-8

Scheduling Information No.

Periodicity

[radio frames]

Mapping of system information blocks

1

32

SIB6

2

32

SIB7

Table 4.4.3.1.3-8: Scheduling for combination NR-9

Scheduling Information No.

Periodicity

[radio frames]

Mapping of system information blocks

1

32

SIB8

Table 4.4.3.1.3-9: Scheduling for combination NR-10

Scheduling Information No.

Periodicity

[radio frames]

Mapping of system information blocks

32

SIB6

Table 4.4.3.1.3-10: Scheduling for combination NR-11

Scheduling Information No.

Periodicity

[radio frames]

Mapping of system information blocks

1

32

SIB7

Table 4.4.3.1.3-11: Scheduling for combination NR-12

Scheduling Information No.

Periodicity

[radio frames]

Mapping of system information blocks

1

64

SIB10

Table 4.4.3.1.3-12: Scheduling for combination NR-13

Scheduling Information No.

Periodicity

[radio frames]

Mapping of system information blocks

1

32

SIB2

2

64

SIB10

Table 4.4.3.1.3-13: Scheduling for combination NR-14

Scheduling Information No.

Periodicity

[radio frames]

Mapping of system information blocks

1

32

SIB2

2

64

SIB4

3

64

SIB12

Table 4.4.3.1.3-14: Scheduling for combination NR-15

Scheduling Information No.

Periodicity

[radio frames]

Mapping of system information blocks

1

32

posSibType1-1, posSibType1-2, posSibType1-3 (Note 1)

32

posSibType4-1 (Note 2)

32

posSibType5-1 (Note 3)

2..N+1

32

posSibType2-1, posSibType2-3, posSibType2-6, posSibType2-7, posSibType2-8, posSibType2-9 (Note 4)

Note 1: Content of SI message 1 when UE supports GNSS as defined in TS 37.571-2 [20] Table 8.1-1: Sub-test 25.

Note 2: Content of SI message 1 when UE supports Sensor as defined in TS 37.571-2 [20] Table 8.1-1: Sub-test 24.

Note 3: Content of SI message 1 when UE supports MBS as defined in TS 37.571-2 [20] Table 8.1-1: Sub-test 23.

Note 4: Content of SI messages 2..N, only present when UE supports GNSS as defined in TS 37.571-2 [20] Table 8.1-1: Sub-test 25. If UE supports N GNSS systems, N SIs are broadcasted, one SI per each GNSS system.

Table 4.4.3.1.3-15: Scheduling for combination NR-16

Scheduling Information No.

Periodicity

[radio frames]

Mapping of system information blocks

1

32

SIB2

2

32

posSibType6-1

Table 4.4.3.1.3-16: Scheduling for combination NR-17

Scheduling Information No.

Periodicity

[radio frames]

Mapping of system information blocks

1

32

SIB2

2

64

SIB4

3

32

posSibType6-1

Table 4.4.3.1.3-17: Scheduling for combination NR-18

Scheduling Information No.

Periodicity

[radio frames]

Mapping of system information blocks

1

64

SIB4

2

64

SIB11

Table 4.4.3.1.3-18: Scheduling for combination NR-19

Scheduling Information No.

Periodicity

[radio frames]

Mapping of system information blocks

1

32

SIB2, SIB11