6 Message definitions and contents

36.5093GPPEvolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Packet Core (EPC)Release 17Special conformance testing functions for User Equipment (UE)TS

In this clause, only TC protocol messages are described. TC messages are intended to be sent using the DLInformationTransfer and ULInformationTransfer procedures, see TS 36.331 [25], sub clause 5.6.1 and 5.6.2.

For UE capable of V2X communication and in out-of-coverage state, TC messages are intended to be sent using AT Command, see TS 27.007[8], chapter 15.

NOTE 1: A message received with skip indicator different from 0 will be ignored.

NOTE 2: For general definition of Layer 3 message format see TS 24.007 [5], clause 11.

NOTE 3: E-UTRA, UTRA and GSM/GPRS test control messages use the same protocol discriminator value ("1111"). Following message type value series are reserved for GSM/GPRS testing commands as specified by TS 44.014 [33]: 0000xxxx, 0001xxxx and 0010xxxx where x represent 0 or 1. Following message type value series are reserved for UTRA testing commands as specified by TS 34.109 [11]: 0100xxxx where x represent 0 or 1. For E-UTRA and NB-IoT test commands the message type value series 1000xxxx and 1001xxxx are reserved, where the message type values 10010000, 10010001, 10010010 and 10010011 are reserved for possible future use by the antenna test function defined in TR 36.978 for use by the two-stage MIMO OTA test method. Should MIMO OTA conformance tests be defined in the future which are applicable to the two-stage method then the message definitions in TR 36.978 may be moved to this specification. There are 2 exceptions to message type values for E-UTRA and NB-IoT test commands, which are the ones related to SET UL MESSAGE REQUEST (message type equal to 10101100) and SET UL MESSAGE RESPONSE (message type equal to 10101101).

6.1 CLOSE UE TEST LOOP

This message is only sent in the direction SS to UE.

Information Element

Reference

Presence

Format

Length

Protocol discriminator

TS 24.007 [5], sub clause 11.2.3.1.1

M

V

½

Skip indicator

TS 24.007 [5], sub clause 11.2.3.1.2

M

V

½

Message type

M

V

1

UE test loop mode

M

V

1

UE test loop mode A LB setup

CV-ModeA

LV

1-25

UE test loop mode B LB setup

CV-ModeB

V

1

UE test loop mode C setup

CV-ModeC

V

3

UE test loop mode D setup

CV-ModeD

LV-E

3-803

UE test loop mode E setup

CV-ModeE

LV

2-18

UE test loop mode F setup

CV-ModeF

V

2

UE test loop mode GH setup

CV-ModeGH

V

2

Condition

Explanation

CV-ModeA

This IE is mandatory present if the IE "UE test loop mode" is set to UE test loop Mode A. Else it shall be absent.

CV-ModeB

This IE is mandatory present if the IE "UE test loop mode" is set to UE test loop Mode B. Else it shall be absent.

CV-ModeC

This IE is mandatory present if the IE "UE test loop mode" is set to UE test loop Mode C. Else it shall be absent.

CV-ModeD

This IE is mandatory present if the IE “UE test loop mode” is set to UE test loop Mode D. Else it shall be absent.

CV-ModeE

This IE is mandatory present if the IE “UE test loop mode” is set to UE test loop Mode E. Else it shall be absent.

CV-ModeF

This IE is mandatory present if the IE “UE test loop mode” is set to UE test loop Mode F. Else it shall be absent.

CV-ModeGH

This IE is mandatory present if the IE “UE test loop mode” is set to UE test loop Mode G or UE test loop mode H. Else it shall be absent.

where message type is:

8

7

6

5

4

3

2

1

bit no.

1

0

0

0

0

0

0

0

octet 1

where UE test loop mode is:

8

7

6

5

4

3

2

1

bit no.

0

0

0

0

X4

X3

X2

X1

octet 1

X4=0 and X3=0 and X2=0 and X1=0 then UE test loop mode A is selected.

X4=0 and X3=0 and X2=0 and X1=1 then UE test loop mode B is selected.

X4=0 and X3=0 and X2=1 and X1=0 then UE test loop mode C is selected.

X4=0 and X3=0 and X2=1 and X1=1 then UE test loop mode D is selected.

X4=0 and X3=1 and X2=0 and X1=0 then UE test loop mode E is selected.

X4=0 and X3=1 and X2=0 and X1=1 then UE test loop mode F is selected.

X4=0 and X3=1 and X2=1 and X1=0 then UE test loop mode G is selected.

X4=0 and X3=1 and X2=1 and X1=1 then UE test loop mode H is selected.

X4=1 and X3=0 and X2=0 and X1=0 then UE test loop mode I is selected.

Other combinations of X1 and X2 and X3 and X4 are reserved for future versions of the protocol.

where UE test loop mode A LB setup is:

8 7 6 5 4 3 2 1

Length of UE test loop mode A LB setup list in bytes

Octet 1

LB setup list

Octet 2

Octet N*3+1

N is the number of LB entities in the LB setup list and is less than or equal to MAX_ModeA_LB_entities.

where LB setup list is:

8 7 6 5 4 3 2 1

LB setup DRB IE#1

Octet 2

Octet 3

Octet 4

LB setup DRB IE#2

Octet 5

Octet 6

Octet 7

LB setup DRB IE#N

Octet N*3-1

Octet N*3

Octet N*3+1

where LB Setup DRB#k IE is:

8

7

6

5

4

3

2

1

bit no.

Z15

Z14

Z13

Z12

Z11

Z10

Z9

Z8

octet 1

Z7

Z6

Z5

Z4

Z3

Z2

Z1

Z0

octet 2

Reserved

Q4

Q3

Q2

Q1

Q0

octet 3

Z15..Z0 = Uplink PDCP SDU size in bits 0.. 12160 (binary coded, Z15 is most significant bit and Z0 least significant bit). See Note 1.

Q4..Q0 = 0..31 representing DRB-Identity -1, where DRB-Identity identifies the data radio bearer in accordance to TS 36.331 [25] (binary coded, where Q4 is most significant bit and Q0 least significant bit).

NOTE 1: The UL PDCP SDU size is limited to 12160 bits (1520 octets).

NOTE 2: A "LB Setup DRB IE" is only needed for a DRB if UL PDCP SDU scaling is needed. If there is no "LB Setup DRB IE" associated with a DRB in the CLOSE UE TEST LOOP message then the same size of the PDCP SDU received in downlink is returned in uplink.

NOTE 3: The UL PDCP SDU size shall be byte aligned (i.e. multiple of 8 bits) according to TS 36.323 [24] clause 6.2.1.

And where UE test loop mode B setup is:

8 7 6 5 4 3 2 1

IP PDU delay

Octet 1

Where IP PDU delay is:

8

7

6

5

4

3

2

1

bit no.

T7

T6

T5

T4

T3

T2

T1

T0

octet 1

T7..T0 = value of T_delay_modeB timer 0..255 seconds (binary coded, T7 is most significant bit and T0 least significant bit).

NOTE: For E-UTRAN to CDMA2000 test cases, the SS should not sent any downlink U-plane data in E-UTRAN after sending a CLOSE UE TEST LOOP message with an IP PDU delay parameter set to value different from zero. In CDMA2000, the T_delay_modeB timer is not used to buffer downlink U-plane data, and at expiry of this timer, if there are buffered data received while in E-UTRAN, it is not specified what the UE will do with these data. See clause 7.3 for the definition of the T_delay_modeB timer.

And where UE test loop mode C setup is:

8 7 6 5 4 3 2 1

MTCH ID

octet 1

octet 2

octet 3

Where MTCH ID is:

8

7

6

5

4

3

2

1

bit no.

A7

A6

A5

A4

A3

A2

A1

A0

Octet 1

Reserved

M3

M2

M1

M0

octet 2

Reserved

L4

L3

L2

L1

L0

octet 3

A7..A0 = MBSFN area identity 0.. 255 (binary coded, A7 is most significant bit and A0 least significant bit). See Note.

M3..M0 = MCH identity 0.. 14 (binary coded, M3 is most significant bit and M0 least significant bit). See Note.

L4..L0 = Logical channel identity 0..28 (binary coded, L4 is most significant bit and L0 least significant bit), See Note.

NOTE: A MTCH is identified by the MCH in the pmch-InfoList-r9 (0..14) and the logicalChannelIdentity-r9 (0..28) in the mbms-SessionInfoList-r9 of the MCH. The pmch-Info-List-r9 is broadcasted on the MCCH in the MBSFNAreaConiguration message, see TS 36.331 [25] clause 5.8. The MBSFN area the UE is to monitor is checked against the mbsfn-AreaId-r9 of the cell, which is broadcasted in the SystemInformationBlockType13-r9 message, see TS 36.331 [25] clause 6.3.1.

And where UE test loop mode D setup is:

8 7 6 5 4 3 2 1

Length of UE test loop mode D setup contents in bytes

Octet 1

Octet 2

Discovery Announce or Monitor

Octet 3

Monitor list

Octet 4

Octet N*2+3

where Discovery Announce or Monitor is:

8

7

6

5

4

3

2

1

bit no.

Reserved

D0

octet 1

D0 = 0 is used to trigger the UE to continuously monitor the discovery messages on the PSDCH, and D0 = 1 is used to trigger the UE to continuously announce a discovery message on the PSDCH.

And where Monitor list is:

8 7 6 5 4 3 2 1

ProSe App Code (LSBs) #1 to monitor

Octet 4

Octet 5

ProSe App Code (LSBs) #2 to monitor

Octet 6

Octet 7

ProSe App Code (LSBs) #N to monitor

Octet N*2+2

Octet N*2+3

N = PROSE_DISCOVERY_MONITOR_N is the number of entities in the list of ProSe App Codes to individually monitor, and is less than or equal to MAX_ModeD_Monitor_Entities.

Where ProSe App Code (LSBs) #n to monitor is:

8

7

6

5

4

3

2

1

bit no.

A7

A6

A5

A4

A3

A2

A1

A0

octet 1

Reserved

A8

octet 2

A8…A0 = LSBs of the ProSe App Code 0..512 to monitor individually. The test system shall ensure that each entity in the list of ProSe App Code (LSBs A8…A0) to monitor is unique.

And where UE test loop mode E setup is:

8 7 6 5 4 3 2 1

Length of UE test loop mode E Monitor setup contents in bytes

Octet 1

Communication Transmit or Receive

Octet 2

Monitor list

Octet 3

Octet N+2

or

Octet 3*N+2

where Communication Transmit or Receive is:

8

7

6

5

4

3

2

1

bit no.

Reserved

E1

E0

octet 1

E0 = 0 is used to trigger the UE to continuously monitor and receive ProSe Direct or V2X Communication message (on STCH, PSCCH and PSSCH), and E0 = 1 is used to trigger the UE to start continuous transmitting ProSe Direct or V2X Communication messages (on STCH).

E1 = 0 is used to indicate the UE is operating ProSe Direct Communication, and E1 = 1 is used to indicate the UE is operating V2X sidelink communication.

And where Monitor list is if E1 = 0:

8 7 6 5 4 3 2 1

Group Destination ID #1 to monitor for ProSe Direct Communication

Octet 3

Group Destination ID #2 to monitor for Prose Direct Communication

Octet 4

Group Destination ID #N to monitor for ProSe Direction Communication

Octet N+2

N = PROSE_COMMUNICATION_MONITOR_N is the number of entities in the list of Group Destination ID to individually monitor, and is less than or equal to MAX_ModeE_Monitor_Entities.

Where Group Destination ID #n to monitor is:

8

7

6

5

4

3

2

1

bit no.

A7

A6

A5

A4

A3

A2

A1

A0

octet 1

A7…A0 = Group Destination ID 0..255 to monitor individually. The test system shall ensure that each entity in the list of Group Destination ID to monitor is unique.

And where Monitor list is if E1 = 1:

8 7 6 5 4 3 2 1

Destination Layer-2 ID #1 to monitor for V2X Communication

Octet 3

Octet 4

Octet 5

Destination Layer-2 ID #2 to monitor for V2X Communication

Octet 6

Octet 7

Octet 8

Destination Layer-2 ID #N to monitor for V2X Communication

Octet 3*N

Octet 3*N+1

Octet 3*N+2

N = PROSE_COMMUNICATION_MONITOR_N is the number of entities in the list of Destination Layer-2 ID to individually monitor, and is less than or equal to MAX_ModeE_Monitor_Entities.

NOTE: The Destination Layer-2 ID is only used for V2X PSSCH packets counting.

Where Destination Layer-2 ID #n to monitor is:

8

7

6

5

4

3

2

1

bit no.

A7

A6

A5

A4

A3

A2

A1

A0

octet 1

A15

A14

A13

A12

A11

A10

A9

A8

octet 1

A23

A22

A21

A20

A19

A18

A17

A16

octet 1

A23…A0 = Destination Layer-2 ID 0..16,777,215 to monitor individually. The test system shall ensure that each entity in the list of Destination Layer-2 ID to monitor is unique.

And where UE test loop mode F setup is:

8 7 6 5 4 3 2 1

SC-MTCH ID

octet 1

octet 2

Where SC-MTCH ID is:

8

7

6

5

4

3

2

1

bit no.

A7

A6

A5

A4

A3

A2

A1

A0

octet 1

A15

A14

A13

A12

A11

A10

A9

A8

octet 2

A15..A0 = SC-PTM g-RNTI-r13 (g-RNTI-r14 in NB-IoT) 0..65535 (binary coded, A15 is most significant bit and A0 least significant bit). A SC-MTCH is identified by the g-RNTI-r13 (g-RNTI-r14 in NB-IoT) (0..65535) in the sc-mtch-Infolist-r13 (sc-mtch-InfoList-r14 in NB-IoT). The sc-mtch-Infolist-r13 (sc-mtch-InfoList-r14 in NB-IoT) is broadcasted on SC-MCCH in the SCPTM-Configuration (SCPTMConfiguration-NB in NB-IoT) message, see TS 36.331 [25] clause 5.8a.

And where UE test loop mode GH setup is:

8 7 6 5 4 3 2 1

Operation mode and repetitions

Octet 1

Uplink data delay

Octet 2

Where Operation mode and repetitions is:

8

7

6

5

4

3

2

1

bit no.

M1

R6

R5

R4

R3

R2

R1

R0

octet 1

M1 = Uplink loopback operation mode. Value 0 means that data is returned in uplink at the EMM entity for UE test loop mode G or the SM-TL SAP for UE test loop mode H, Value 1 means that data is returned in uplink at the RLC AM-SAP of SRB1bis for NB-IoT UE or at the RLC AM-SAP of SRB2 for E-UTRA UE.

R6..R0 = Number of repetitions of received content of received user data in downlink in uplink. Range 0..127 repetitions (binary coded, R6 is most significant bit and R0 least significant bit). 0 means that no data is returned in uplink, 1 means that the same user data as received in downlink is returned in uplink, 2 means that the received content of user data in downlink is repeated up to maximum 127 times in uplink.

Where Uplink data delay is:

8

7

6

5

4

3

2

1

bit no.

T7

T6

T5

T4

T3

T2

T1

T0

octet 1

T7..T0 = value of T_delay_modeGH timer 0..255 seconds (binary coded, T7 is most significant bit and T0 least significant bit).

6.2 CLOSE UE TEST LOOP COMPLETE

This message is only sent in the direction UE to SS.

Information Element

Reference

Presence

Format

Length

Protocol discriminator

TS 24.007 [5], sub clause 11.2.3.1.1

M

V

1/2

Skip indicator

TS 24.007 [5], sub clause 11.2.3.1.2

M

V

1/2

Message type

M

V

1

where message type is:

8

7

6

5

4

3

2

1

bit no.

1

0

0

0

0

0

0

1

octet 1

6.3 OPEN UE TEST LOOP

This message is only sent in the direction SS to UE.

Information Element

Reference

Presence

Format

Length

Protocol discriminator

TS 24.007 [5], sub clause 11.2.3.1.1

M

V

½

Skip indicator

TS 24.007 [5], sub clause 11.2.3.1.2

M

V

½

Message type

M

V

1

where message type is:

8

7

6

5

4

3

2

1

bit no.

1

0

0

0

0

0

1

0

octet 1

6.4 OPEN UE TEST LOOP COMPLETE

This message is only sent in the direction UE to SS.

Information Element

Reference

Presence

Format

Length

Protocol discriminator

TS 24.007 [5], sub clause 11.2.3.1.1

M

V

1/2

Skip indicator

TS 24.007 [5], sub clause 11.2.3.1.2

M

V

1/2

Message type

M

V

1

where message type is:

8

7

6

5

4

3

2

1

bit no.

1

0

0

0

0

0

1

1

octet 1

6.5 ACTIVATE TEST MODE

This message is only sent in the direction SS to UE.

Information Element

Reference

Presence

Format

Length

Protocol discriminator

TS 24.007 [5], sub clause 11.2.3.1.1

M

V

½

Skip indicator

TS 24.007 [5], sub clause 11.2.3.1.2

M

V

½

Message type

M

V

1

UE test loop mode

M

V

1

where message type is:

8

7

6

5

4

3

2

1

bit no.

1

0

0

0

0

1

0

0

octet 1

And where UE test loop mode is specified in clause 6.1.

NOTE: No specific UE action is currently specified upon reception of the "UE test loop mode" IE.

6.6 ACTIVATE TEST MODE COMPLETE

This message is only sent in the direction UE to SS.

Information Element

Reference

Presence

Format

Length

Protocol discriminator

TS 24.007 [5], sub clause 11.2.3.1.1

M

V

½

Skip indicator

TS 24.007 [5], sub clause 11.2.3.1.2

M

V

½

Message type

M

V

1

where message type is:

8

7

6

5

4

3

2

1

bit no.

1

0

0

0

0

1

0

1

octet 1

6.7 DEACTIVATE TEST MODE

This message is only sent in the direction SS to UE.

Information Element

Reference

Presence

Format

Length

Protocol discriminator

TS 24.007 [5], sub clause 11.2.3.1.1

M

V

½

Skip indicator

TS 24.007 [5], sub clause 11.2.3.1.2

M

V

½

Message type

M

V

1

where message type is:

8

7

6

5

4

3

2

1

bit no.

1

0

0

0

0

1

1

0

octet 1

6.8 DEACTIVATE TEST MODE COMPLETE

This message is only sent in the direction UE to SS.

Information Element

Reference

Presence

Format

Length

Protocol discriminator

TS 24.007 [5], sub clause 11.2.3.1.1

M

V

½

Skip indicator

TS 24.007 [5], sub clause 11.2.3.1.2

M

V

½

Message type

M

V

1

where message type is:

8

7

6

5

4

3

2

1

bit no.

1

0

0

0

0

1

1

1

octet 1

6.9 RESET UE POSITIONING STORED INFORMATION

This message is only sent in the direction SS to UE.

Information Element

Reference

Presence

Format

Length

Protocol discriminator

TS 24.007 [5], subclause 11.2.3.1.1

M

V

½

Skip indicator

TS 24.007 [5], subclause 11.2.3.1.2

M

V

½

Message type

M

V

1

UE Positioning Technology

M

V

1

where message type is:

8

7

6

5

4

3

2

1

bit no.

1

0

0

0

1

0

0

0

octet 1

where UE Positioning Technology is a single octet IE:

8

7

6

5

4

3

2

1

bit no.

UE Positioning Technology

octet 1

UE Positioning Technology value

Bits

8 7 6 5 4 3 2 1

0 0 0 0 0 0 0 0 AGNSS

0 0 0 0 0 0 0 1 OTDOA

0 0 0 0 0 0 1 0 MBS

0 0 0 0 0 0 1 1 WLAN

0 0 0 0 0 1 0 0 Bluetooth

0 0 0 0 0 1 0 1 Sensor

All other cause values are reserved for future use.

6.10 UE TEST LOOP MODE C MBMS PACKET COUNTER REQUEST

This message is only sent in the direction SS to UE.

Information Element

Reference

Presence

Format

Length

Protocol discriminator

TS 24.007 [5], subclause 11.2.3.1.1

M

V

½

Skip indicator

TS 24.007 [5], subclause 11.2.3.1.2

M

V

½

Message type

M

V

1

where message type is:

8

7

6

5

4

3

2

1

bit no.

1

0

0

0

1

0

0

1

octet 1

6.11 UE TEST LOOP MODE C MBMS PACKET COUNTER RESPONSE

This message is only sent in the direction UE to SS.

Information Element

Reference

Presence

Format

Length

Protocol discriminator

TS 24.007 [5], subclause 11.2.3.1.1

M

V

½

Skip indicator

TS 24.007 [5], subclause 11.2.3.1.2

M

V

½

Message type

M

V

1

MBMS Packet Counter Value

M

V

4

where message type is:

8

7

6

5

4

3

2

1

bit no.

1

0

0

0

1

0

1

0

octet 1

And where MBMS Packet Counter Value is:

C31

C30

C29

C28

C27

C26

C25

C24

octet 1

C23

C22

C21

C20

C19

C18

C17

C16

octet 2

C15

C14

C13

C12

C11

C10

C9

C8

octet 3

C7

C6

C5

C4

C3

C2

C1

C0

octet 4

C31..C0 = MBMS packet counter value 0.. 4294967295 (binary coded, C31 is most significant bit and C0 least significant bit).

6.12 UPDATE UE LOCATION INFORMATION

This message is only sent in the direction SS to UE.

Information Element

Reference

Presence

Format

Length

Protocol discriminator

TS 24.007 [5], subclause 11.2.3.1.1

M

V

½

Skip indicator

TS 24.007 [5], subclause 11.2.3.1.2

M

V

½

Message type

M

V

1

ellipsoidPointWithAltitude

TS 36.355 [37], subclause 6.4.1.

M

V

8

horizontalVelocity

TS 36.355 [37], subclause 6.4.1.

M

V

3

gnss-TOD-msec

TS 36.355 [37], subclause 6.5.2.6.

M

V

3

where message type is:

8

7

6

5

4

3

2

1

bit no.

1

0

0

0

1

0

1

1

octet 1

And where ellipsoidPointWithAltitude is:

8

7

6

5

4

3

2

1

bit no.

L1

DLA22

DLA21

DLA20

DLA19

DLA18

DLA17

DLA16

octet 1

DLA15

DLA14

DLA13

DLA12

DLA11

DLA10

DLA9

DLA8

octet 2

DLA7

DLA6

DLA5

DLA4

DLA3

DLA2

DLA1

DLA0

octet 3

DLO23

DLO22

DLO21

DLO20

DLO19

DLO18

DLO17

DLO16

octet 4

DLO15

DLO14

DLO13

DLO12

DLO11

DLO10

DLO9

DLO8

octet 5

DLO7

DLO6

DLO5

DLO4

DLO3

DLO2

DLO1

DLO0

octet 6

A1

AD14

AD13

AD12

AD11

AD10

AD9

AD8

octet 7

AD7

AD6

AD5

AD4

AD3

AD2

AD1

AD0

octet 8

L1 = “latitudeSign” value 0=north and 1=south

DLA22..DLA0 = “degreesLatitude” value 0..8388607 (binary coded, DLA22 is most significant bit and DLA0 is least significant bit).

DLO23..DLO0 = “degreesLongitude” value -8388608..8388607 (two’s complement binary coded in a fixed length of 24 bits in a fixed length of 24 bits, DLO23 is most significant bit and DLO0 is least significant bit).

A1 = “altitudeDirection” value 0=height and 1=depth

AD14..AD0 = “altitude” value 0..32767 (binary coded, AD14 is most significant bit and AD0 is least significant bit).

And where horizontalVelocity is:

8

7

6

5

4

3

2

1

bit no.

B8

B7

B6

B5

B4

B3

B2

B1

Octet 1

B0

HS10

HS9

HS8

HS7

HS6

HS5

HS4

octet 2

HS3

HS2

HS1

HS0

Reserved

octet 3

B8..B0 = “bearing” value 0..359 (binary coded, B8 is most significant bit and B0 is least significant bit).

HS10..HS0 = “horizontalSpeed” value 0..2047 (binary coded, HS10 is most significant bit and HS0 is least significant bit).

And where nss-TOD-msec is:

8

7

6

5

4

3

2

1

bit no.

Reserved

T21

T20

T19

T18

T17

T16

octet 1

T15

T14

T13

T12

T11

T10

T9

T8

octet 2

T7

T6

T5

T4

T3

T2

T1

T0

octet 3

T21..T0 = “gnss-TOD-msec” value 0.. 3599999 (binary coded, T21 is most significant bit and T0 is least significant bit).

6.13 UE TEST LOOP PROSE PACKET COUNTER REQUEST

This message is only sent in the direction SS to UE.

Information Element

Reference

Presence

Format

Length

Protocol discriminator

TS 24.007 [5], subclause 11.2.3.1.1

M

V

½

Skip indicator

TS 24.007 [5], subclause 11.2.3.1.2

M

V

½

Message type

M

V

1

where message type is:

8

7

6

5

4

3

2

1

bit no.

1

0

0

0

1

1

0

0

octet 1

6.14 UE TEST LOOP PROSE PACKET COUNTER RESPONSE

This message is only sent in the direction UE to SS.

Information Element

Reference

Presence

Format

Length

Protocol discriminator

TS 24.007 [5], subclause 11.2.3.1.1

M

V

½

Skip indicator

TS 24.007 [5], subclause 11.2.3.1.2

M

V

½

Message type

M

V

1

ProSe Direct Discovery Packet Counter(s) Value

CV-ModeD

TLV-E

4*(ND+1)+ 3

ProSe Direct or V2X Communication PSCCH Packet Counter(s) Value

CV-ModeE

TLV

4*(NC+1)+2

ProSe Direct or V2X Communication STCH Packet Counter(s) Value

CV-ModeE

TLV

4*(NC+1)+2

ProSe Direct or V2X Communication PSSCH Packet Counter(s) Value

CV-ModeE

TLV

4*(NC+1)+2

Condition

Explanation

CV-ModeD

This IE is mandatory present if TEST_LOOP_MODE_D_ACTIVE is TRUE else it shall be absent. ND = PROSE_DISCOVERY_MONITOR_N.

CV-ModeE

This IE is mandatory present if TEST_LOOP_MODE_E_ACTIVE is TRUE else it shall be absent. NC = PROSE_COMMUNICATION_MONITOR_N.

where message type is:

8

7

6

5

4

3

2

1

bit no.

1

0

0

0

1

1

0

1

octet 1

And where ProSe Direct Discovery Packet Counter(s) Value is:

8 7 6 5 4 3 2 1

ProSe Direct Discovery Packet Counter(s) Value type

octet 1

Length of ProSe Direct Discovery Packet Counter(s) Value contents in bytes

octets 2-3

ProSe Direct Discovery Packet Counter IE #0

octet 4

octet 5

octet 6

octet 7

ProSe Direct Discovery Packet Counter IE #ND

octet 4+4 * ND

octet 5+4 * ND

octet 6+4 * ND

octet 7+4 * ND

And where ProSe Direct Discovery Packet Counter(s) Value type is:

8

7

6

5

4

3

2

1

bit no.

0

0

0

0

0

0

0

0

octet 1

And where ProSe Direct Discovery Packet Counter IE #n is:

C31

C30

C29

C28

C27

C26

C25

C24

octet 1

C23

C22

C21

C20

C19

C18

C17

C16

octet 2

C15

C14

C13

C12

C11

C10

C9

C8

octet 3

C7

C6

C5

C4

C3

C2

C1

C0

octet 4

C31..C0 = PSDCH packet counter value 0.. 4294967295 (binary coded, C31 is most significant bit and C0 least significant bit) corresponding to PSDCH_PACKET_COUNTER(SL_ID=n).

And where ProSe Direct or V2X Communication PSCCH Packet Counter(s) Value is:

8 7 6 5 4 3 2 1

ProSe Direct or V2X Communication PSCCH Packet Counter(s) Value type

octet 1

Length of ProSe Direct or V2X Communication PSCCH Packet Counter(s) Value contents in bytes

octet 2

ProSe Direct or V2X Communication PSCCH Packet Counter IE #0

octet 3

octet 4

octet 5

octet 6

ProSe Direct or V2X Communication PSCCH Packet Counter IE #NC

octet 3+4 * NC

octet 4+4 * NC

octet 5+4 * NC

octet 6+4 * NC

And where ProSe Direct or V2X Communication PSCCH Packet Counter(s) Value type is:

8

7

6

5

4

3

2

1

bit no.

0

0

0

0

0

0

0

1

octet 1

And where ProSe Direct or V2X Communication PSCCH Packet Counter IE #n is:

D31

D30

D29

D28

D27

D26

D25

D24

octet 1

D23

D22

D21

D20

D19

D18

D17

D16

octet 2

D15

D14

D13

D12

D11

D10

D9

D8

octet 3

D7

D6

D5

D4

D3

D2

D1

D0

octet 4

D31..D0 = PSCCH packet counter 0.. 4294967295 (binary coded, D31 is most significant bit and D0 least significant bit) corresponding to PSCCH_PACKET_COUNTER(SL_ID = n).

NOTE: For V2X communication, the ProSe Direct or V2X Communication PSCCH Packet Counter IE #SL_ID with SL_ID = 0 … PROSE_COMMUNICATION_MONITOR_N-1 is zero.

And where ProSe Direct or V2X Communication STCH Packet Counter(s) Value is:

8 7 6 5 4 3 2 1

ProSe Direct or V2X Communication STCH Packet Counter(s) Value type

octet 1

Length of ProSe Direct or V2X Communication STCH Packet Counter(s) Value in bytes

octet 2

ProSe Direct or V2X Communication STCH Packet Counter IE #0

octet 3

octet 4

octet 5

octet 6

ProSe Direct or V2X Communication STCH Packet Counter IE #NC

octet 3+4 * NC

octet 4+4 * NC

octet 5+4 * NC

octet 6+4 * NC

where ProSe Direct or V2X Communication STCH Packet Counter(s) Value type is:

8

7

6

5

4

3

2

1

bit no.

0

0

0

0

0

0

1

0

octet 1

And where ProSe Direct or V2X Communication STCH Packet Counter IE #n is:

E31

E30

E29

E28

E27

E26

E25

E24

octet 1

E23

E22

E21

E20

E19

E18

E17

E16

octet 2

E15

E14

E13

E12

E11

E10

E9

E8

octet 3

E7

E6

E5

E4

E3

E2

E1

E0

octet 4

E31..E0 = STCH Packet Counter value 0.. 4294967295 (binary coded, E31 is most significant bit and E0 least significant bit) corresponding to STCH_PACKET_COUNTER(SL_ID = n).

And where ProSe Direct or V2X Communication PSSCH Packet Counter(s) Value is:

8 7 6 5 4 3 2 1

ProSe Direct or V2X Communication PSSCH Packet Counter(s) Value type

octet 1

Length of ProSe Direct or V2X Communication PSSCH Packet Counter(s) Value contents in bytes

octet 2

ProSe Direct or V2X Communication PSSCH Packet Counter IE #0

octet 3

octet 4

octet 5

octet 6

ProSe Direct or V2X Communication PSSCH Packet Counter IE #NC

octet 3+4 * NC

octet 4+4 * NC

octet 5+4 * N

octet 6+4 * NC

And where ProSe Direct or V2X Communication PSSCH Packet Counter(s) Value type is:

8

7

6

5

4

3

2

1

bit no.

0

0

0

0

0

0

1

1

octet 1

And where ProSe Direct or V2X Communication PSSCH Packet Counter IE #n is:

F31

F30

F29

F28

F27

F26

F25

F24

octet 1

F23

F22

F21

F20

F19

F18

F17

F16

octet 2

F15

F14

F13

F12

F11

F10

F9

F8

octet 3

F7

F6

F5

F4

F3

F2

F1

F0

octet 4

F31..F0 = PSSCH packet counter 0.. 4294967295 (binary coded, F31 is most significant bit and F0 least significant bit) corresponding to PSSCH_PACKET_COUNTER(SL_ID = n).

6.15 UE TEST LOOP MODE F SCPTM PACKET COUNTER REQUEST

This message is only sent in the direction SS to UE.

Information Element

Reference

Presence

Format

Length

Protocol discriminator

TS 24.007 [5], subclause 11.2.3.1.1

M

V

½

Skip indicator

TS 24.007 [5], subclause 11.2.3.1.2

M

V

½

Message type

M

V

1

where message type is:

8

7

6

5

4

3

2

1

bit no.

1

0

0

0

1

1

1

0

octet 1

6.16 UE TEST LOOP MODE F SCPTM PACKET COUNTER RESPONSE

This message is only sent in the direction UE to SS.

Information Element

Reference

Presence

Format

Length

Protocol discriminator

TS 24.007 [5], subclause 11.2.3.1.1

M

V

½

Skip indicator

TS 24.007 [5], subclause 11.2.3.1.2

M

V

½

Message type

M

V

1

SCPTM Packet Counter Value

M

V

4

where message type is:

8

7

6

5

4

3

2

1

bit no.

1

0

0

0

1

1

1

1

octet 1

And where SCPTM Packet Counter Value is:

F31

F30

F29

F28

F27

F26

F25

F24

octet 1

F23

F22

F21

F20

F19

F18

F17

F16

octet 2

F15

F14

F13

F12

F11

F10

F9

F8

octet 3

F7

F6

F5

F4

F3

F2

F1

F0

octet 4

F31..F0 = SCPTM packet counter value 0.. 4294967295 (binary coded,F31 is most significant bit and F0 least significant bit).

6.17 ANTENNA INFORMATION REQUEST

This message is only sent in the direction SS to UE.

Information Element

Reference

Presence

Format

Length

Protocol discriminator

TS 24.007 [5], subclause 11.2.3.1.1

M

V

½

Skip indicator

TS 24.007 [5], subclause 11.2.3.1.2

M

V

½

Message type

M

V

1

Carrier number (CN)

M

V

1

where message type is:

8

7

6

5

4

3

2

1

bit no.

1

0

0

1

0

0

0

0

octet 1

where carrier number is:

8

7

6

5

4

3

2

1

bit no.

0

0

0

0

0

C2

C1

C0

octet 1

C2..C0 = Carrier number (CN) value 0 .. 4 (binary coded, C2 is most significant bit and C0 least significant bit).

The mappings from CN to carrier are as follows:

CN = 0 Primary serving cell

CN = 1 Secondary serving cell (if present)

CN = 2 Tertiary serving cell (if present)

CN = 3 Quaternary serving cell (if present)

CN = 4 Quinary serving cell (if present)

6.18 ANTENNA INFORMATION RESPONSE

This message is only sent in the direction UE to SS.

Information Element

Reference

Presence

Format

Length

Protocol discriminator

TS 24.007 [5], subclause 11.2.3.1.1

M

V

½

Skip indicator

TS 24.007 [5], subclause 11.2.3.1.2

M

V

½

Message type

M

V

1

Carrier number

M

V

1

Number of receives (NR)

M

V

1

RSAP (for Rx0)

M

V

2

RSAP (for Rx1)

C if NR > 1

V

2

RSARP (for Rx0 and Rx1)

C if NR > 1

V

2

RSAP (for Rx2)

C if NR > 2

V

2

RSARP (for Rx0 and Rx2)

C if NR > 2

V

2

RSAP (for Rx3)

C if NR > 3

V

2

RSARP (for Rx0 and Rx3)

C if NR > 3

V

2

RSAP (for Rx4)

C if NR > 4

V

2

RSARP (for Rx0 and Rx4)

C if NR > 4

V

2

RSAP (for Rx5)

C if NR > 5

V

2

RSARP (for Rx0 and Rx5)

C if NR > 5

V

2

RSAP (for Rx6)

C if NR > 6

V

2

RSARP (for Rx0 and Rx6)

C if NR > 6

V

2

RSAP (for Rx7)

C if NR > 7

V

2

RSARP (for Rx0 and Rx7)

C if NR > 7

V

2

where message type is:

8

7

6

5

4

3

2

1

bit no.

1

0

0

1

0

0

0

1

octet 1

where carrier number is:

8

7

6

5

4

3

2

1

bit no.

0

0

0

0

0

C2

C1

C0

octet 1

C2..C0 = Carrier number value 0 .. 4 (binary coded, C2 is most significant bit and C0 least significant bit).

The reported carrier number should match the value given in the previous ANTENNA INFORMATION REQUEST message

where number of receivers is:

8

7

6

5

4

3

2

1

bit no.

0

0

0

0

0

N2

N1

N0

octet 1

N2 .. N0 is the number of receivers (NR) supported by the UE for the indicated carrier number. The value is binary coded with N2 as the most significant bit and N0 as the least significant bit. The expected values are in the range 1, 2, 4 or 8.

The reported number of receive antennas determines the presence of the optional fields for RSAP on Rx1..7 and the corresponding RSARP values

where RSAP is:

8

7

6

5

4

3

2

1

bit no.

1

0

R13

R12

R11

R10

R9

R8

octet 1

R7

R6

R5

R4

R3

R2

R1

R0

octet 2

R13..R0 is the measured RSAP value for the indicated receiver and carrier number. The RSAP value in -xxx.xx dBm shall be multiplied by -100 and binary coded with R13 as the most significant bit and R0 as the least significant bit. The RSAP value shall be in the range of 0.00 to -120.00 dBm

where RSARP is:

8

7

6

5

4

3

2

1

bit no.

P15

P14

P13

P12

P11

P10

P9

P8

octet 1

P7

P6

P5

P4

P3

P2

P1

P0

octet 2

P15..P0 is the measured RSARP value for the indicated receivers and carrier number. The RSARP value xxx.xx degrees shall be multiplied by 100 and binary coded with P15 as the most significant bit and P0 as the least significant bit. The RSARP value shall be in the range of 0 to 359.99 degrees.

6.19 SET UL MESSAGE

6.19.1 SET UL MESSAGE REQUEST

This message is only sent in the direction SS to UE.

Information Element

Reference

Presence

Format

Length

Protocol discriminator

TS 24.007 [5], sub clause 11.2.3.1.1

M

V

½

Skip indicator

TS 24.007 [5], sub clause 11.2.3.1.2

M

V

½

Message type

M

V

1

Use Preconfigured UL Message

M

V

1

where message type is:

8

7

6

5

4

3

2

1

bit no.

1

0

1

0

1

1

0

0

octet 1

where Use Preconfigured UL Message is:

8

7

6

5

4

3

2

1

bit no.

Reserved

E0

octet 2

E0=1: Use Preconfigured UE Capability.

6.19.2 SET UL MESSAGE RESPONSE

This message is only sent in the direction UE to SS.

Information Element

Reference

Presence

Format

Length

Protocol discriminator

TS 24.007 [5], sub clause 11.2.3.1.1

M

V

½

Skip indicator

TS 24.007 [5], sub clause 11.2.3.1.2

M

V

½

Message type

M

V

1

where message type is:

8

7

6

5

4

3

2

1

bit no.

1

0

1

0

1

1

0

1

octet 1