G.4 Statistical testing of Performance Requirements with BLER limit

38.521-43GPPNRPart 4: PerformanceRadio transmission and receptionRelease 17TSUser Equipment (UE) conformance specification

G.4.1 General

The test of receiver performance characteristics is twofold.

1. A signal or a combination of signals is offered to the RX port(s) of the receiver.

2. The ability of the receiver to demodulate /decode this signal is verified by measuring the throughput.

In (2) is the statistical aspect of the test and is treated here.

The minimum requirement for several receiver performance test cases is specified in regards of BLER: 0.001%.

G.4.2 Design of the test

The test is defined by the following design principles (see clause G.2, Theory):

1. The early decision concept is applied.

2. A second limit is introduced: Bad DUT factor M>1.

3. To decide the test pass:

Supplier risk is applied based on the Bad DUT quality

To decide the test fail:

Customer Risk is applied based on the specified DUT quality

G.4.3 Numerical definition of the pass fail limits for 0.001% BLER

The numerical pass/fail limit is derived by the following parameters:

1a) Limit Error Ratio = 0.001%

2a) Bad DUT factor M=1.5 (selectivity)

justification see: TS 34.121 Clause F.6.3.3

3) Confidence level CL = 99.999%

Table G.4.3-1: Pass fail limits

ne

nsp

nsf

ne

nsp

nsf

ne

nsp

nsf

0

1074532

1067

215

20006574

14871394

430

36441701

33298651

1

1074532

1067

216

20085020

14954177

431

36516711

33386452

2

1274645

1067

217

20163439

15036999

432

36591711

33474268

3

1444583

1067

218

20241831

15119861

433

36666702

33562097

4

1599072

4727

219

20320196

15202761

434

36741683

33649940

5

1743641

12160

220

20398535

15285701

435

36816654

33737797

6

1881111

23683

221

20476847

15368679

436

36891616

33825668

7

2013164

39190

222

20555133

15451695

437

36966568

33913553

8

2140902

58403

223

20633393

15534749

438

37041511

34001452

9

2265092

81000

224

20711628

15617841

439

37116445

34089364

10

2386297

106667

225

20789836

15700971

440

37191369

34177291

11

2504945

135116

226

20868019

15784137

441

37266283

34265231

12

2621369

166089

227

20946177

15867341

442

37341189

34353184

13

2735834

199360

228

21024309

15950581

443

37416085

34441151

14

2848557

234730

229

21102417

16033858

444

37490972

34529132

15

2959718

272025

230

21180499

16117172

445

37565849

34617126

16

3069467

311091

231

21258557

16200521

446

37640718

34705134

17

3177931

351792

232

21336590

16283906

447

37715577

34793155

18

3285220

394009

233

21414599

16367326

448

37790427

34881189

19

3391428

437636

234

21492584

16450782

449

37865268

34969237

20

3496637

482577

235

21570545

16534273

450

37940100

35057298

21

3600921

528746

236

21648482

16617799

451

38014923

35145372

22

3704343

576068

237

21726395

16701360

452

38089737

35233459

23

3806960

624473

238

21804284

16784955

453

38164542

35321560

24

3908823

673898

239

21882150

16868585

454

38239338

35409673

25

4009977

724286

240

21959993

16952248

455

38314125

35497800

26

4110465

775585

241

22037812

17035945

456

38388903

35585939

27

4210324

827748

242

22115608

17119676

457

38463672

35674092

28

4309587

880730

243

22193382

17203440

458

38538432

35762258

29

4408285

934492

244

22271133

17287238

459

38613184

35850436

30

4506448

988997

245

22348861

17371068

460

38687927

35938627

31

4604101

1044211

246

22426567

17454931

461

38762661

36026831

32

4701268

1100101

247

22504250

17538827

462

38837386

36115048

33

4797972

1156638

248

22581911

17622755

463

38912102

36203278

34

4894232

1213795

249

22659550

17706716

464

38986810

36291520

35

4990069

1271547

250

22737168

17790708

465

39061510

36379774

36

5085500

1329869

251

22814763

17874733

466

39136200

36468042

37

5180542

1388740

252

22892337

17958789

467

39210882

36556322

38

5275209

1448137

253

22969889

18042876

468

39285556

36644614

39

5369517

1508043

254

23047420

18126994

469

39360221

36732919

40

5463478

1568438

255

23124929

18211144

470

39434877

36821237

41

5557107

1629304

256

23202418

18295325

471

39509525

36909566

42

5650414

1690627

257

23279885

18379536

472

39584165

36997908

43

5743410

1752389

258

23357331

18463778

473

39658796

37086263

44

5836108

1814577

259

23434757

18548050

474

39733419

37174629

45

5928516

1877177

260

23512162

18632353

475

39808033

37263008

46

6020643

1940175

261

23589546

18716685

476

39882639

37351399

47

6112500

2003560

262

23666910

18801047

477

39957237

37439803

48

6204094

2067319

263

23744254

18885439

478

40031826

37528218

49

6295434

2131442

264

23821577

18969861

479

40106407

37616645

50

6386526

2195916

265

23898880

19054311

480

40180980

37705085

51

6477380

2260734

266

23976164

19138791

481

40255545

37793536

52

6568000

2325884

267

24053427

19223300

482

40330102

37882000

53

6658395

2391358

268

24130671

19307838

483

40404650

37970475

54

6748569

2457146

269

24207895

19392404

484

40479190

38058963

55

6838530

2523241

270

24285099

19476999

485

40553722

38147462

56

6928283

2589634

271

24362284

19561623

486

40628246

38235973

57

7017834

2656318

272

24439450

19646274

487

40702762

38324496

58

7107187

2723285

273

24516597

19730954

488

40777270

38413030

59

7196348

2790528

274

24593724

19815662

489

40851770

38501576

60

7285321

2858041

275

24670832

19900397

490

40926262

38590134

61

7374112

2925816

276

24747922

19985160

491

41000746

38678704

62

7462724

2993848

277

24824993

20069950

492

41075222

38767285

63

7551162

3062130

278

24902045

20154768

493

41149690

38855878

64

7639430

3130657

279

24979078

20239613

494

41224150

38944482

65

7727532

3199424

280

25056093

20324485

495

41298602

39033098

66

7815471

3268424

281

25133089

20409383

496

41373047

39121725

67

7903252

3337653

282

25210068

20494309

497

41447483

39210364

68

7990878

3407105

283

25287028

20579261

498

41521912

39299014

69

8078352

3476777

284

25363970

20664239

499

41596333

39387675

70

8165677

3546663

285

25440893

20749244

500

41670746

39476348

71

8252857

3616759

286

25517799

20834275

501

41745152

39565032

72

8339894

3687060

287

25594687

20919332

502

41819550

39653727

73

8426792

3757563

288

25671558

21004415

503

41893940

39742434

74

8513553

3828263

289

25748411

21089524

504

41968323

39831151

75

8600181

3899156

290

25825246

21174658

505

42042698

39919880

76

8686677

3970239

291

25902063

21259818

506

42117065

40008620

77

8773044

4041508

292

25978864

21345003

507

42191424

40097371

78

8859286

4112960

293

26055647

21430213

508

42265777

40186133

79

8945403

4184590

294

26132413

21515449

509

42340121

40274907

80

9031399

4256396

295

26209162

21600709

510

42414458

40363691

81

9117276

4328375

296

26285893

21685995

511

42488788

40452486

82

9203035

4400523

297

26362608

21771305

512

42563110

40541292

83

9288680

4472838

298

26439306

21856639

513

42637425

40630109

84

9374212

4545316

299

26515987

21941999

514

42711732

40718937

85

9459633

4617954

300

26592652

22027382

515

42786032

40807776

86

9544944

4690751

301

26669300

22112790

516

42860324

40896625

87

9630149

4763702

302

26745931

22198222

517

42934609

40985485

88

9715249

4836806

303

26822546

22283678

518

43008887

41074356

89

9800245

4910060

304

26899145

22369157

519

43083157

41163238

90

9885139

4983461

305

26975727

22454661

520

43157420

41252131

91

9969933

5057007

306

27052293

22540188

521

43231676

41341034

92

10054629

5130696

307

27128843

22625739

522

43305924

41429947

93

10139228

5204526

308

27205377

22711313

523

43380165

41518872

94

10223731

5278493

309

27281895

22796910

524

43454399

41607806

95

10308141

5352597

310

27358398

22882531

525

43528626

41696752

96

10392459

5426835

311

27434884

22968175

526

43602846

41785708

97

10476685

5501204

312

27511355

23053842

527

43677058

41874674

98

10560822

5575703

313

27587810

23139531

528

43751263

41963651

99

10644871

5650331

314

27664249

23225243

529

43825462

42052638

100

10728833

5725084

315

27740673

23310978

530

43899653

42141635

101

10812709

5799961

316

27817081

23396736

531

43973837

42230643

102

10896501

5874961

317

27893475

23482516

532

44048014

42319662

103

10980210

5950082

318

27969852

23568318

533

44122183

42408690

104

11063837

6025321

319

28046215

23654143

534

44196346

42497729

105

11147384

6100677

320

28122563

23739989

535

44270502

42586778

106

11230851

6176149

321

28198895

23825858

536

44344651

42675837

107

11314239

6251735

322

28275212

23911748

537

44418793

42764907

108

11397550

6327434

323

28351515

23997661

538

44492928

42853986

109

11480785

6403243

324

28427803

24083595

539

44567056

42943076

110

11563945

6479161

325

28504075

24169550

540

44641177

43032176

111

11647030

6555187

326

28580333

24255527

541

44715291

43121286

112

11730042

6631320

327

28656577

24341526

542

44789399

43210406

113

11812982

6707558

328

28732806

24427546

543

44863499

43299535

114

11895850

6783899

329

28809020

24513587

544

44937593

43388675

115

11978648

6860343

330

28885220

24599649

545

45011680

43477825

116

12061377

6936887

331

28961405

24685732

546

45085760

43566985

117

12144037

7013532

332

29037577

24771836

547

45159833

43656155

118

12226629

7090274

333

29113734

24857961

548

45233900

43745334

119

12309155

7167114

334

29189876

24944107

549

45307960

43834523

120

12391614

7244050

335

29266005

25030273

550

45382013

43923723

121

12474008

7321081

336

29342119

25116460

551

45456059

44012932

122

12556338

7398206

337

29418220

25202668

552

45530099

44102150

123

12638604

7475422

338

29494306

25288896

553

45604132

44191379

124

12720808

7552731

339

29570379

25375144

554

45678159

44280617

125

12802949

7630129

340

29646438

25461412

555

45752178

44369865

126

12885029

7707617

341

29722483

25547700

556

45826192

44459123

127

12967048

7785194

342

29798514

25634009

557

45900198

44548390

128

13049007

7862857

343

29874532

25720337

558

45974198

44637667

129

13130907

7940606

344

29950536

25806685

559

46048192

44726953

130

13212749

8018441

345

30026527

25893053

560

46122179

44816249

131

13294533

8096360

346

30102504

25979441

561

46196159

44905555

132

13376259

8174362

347

30178468

26065848

562

46270133

44994870

133

13457929

8252446

348

30254418

26152274

563

46344100

45084194

134

13539543

8330612

349

30330355

26238721

564

46418061

45173528

135

13621102

8408859

350

30406279

26325186

565

46492016

45262871

136

13702605

8487185

351

30482190

26411671

566

46565964

45352224

137

13784055

8565589

352

30558087

26498174

567

46639906

45441586

138

13865452

8644072

353

30633972

26584697

568

46713841

45530958

139

13946795

8722632

354

30709843

26671239

569

46787770

45620339

140

14028086

8801268

355

30785702

26757800

570

46861692

45709729

141

14109325

8879979

356

30861547

26844380

571

46935608

45799128

142

14190513

8958765

357

30937380

26930979

572

47009518

45888537

143

14271650

9037625

358

31013200

27017596

573

47083422

45977955

144

14352737

9116558

359

31089007

27104232

574

47157319

46067382

145

14433775

9195563

360

31164802

27190886

575

47231210

46156818

146

14514763

9274640

361

31240584

27277559

576

47305094

46246264

147

14595702

9353788

362

31316353

27364250

577

47378973

46335719

148

14676593

9433006

363

31392110

27450959

578

47452845

46425182

149

14757437

9512294

364

31467854

27537687

579

47526711

46514655

150

14838233

9591650

365

31543586

27624433

580

47600570

46604137

151

14918983

9671074

366

31619306

27711197

581

47674424

46693628

152

14999686

9750566

367

31695013

27797979

582

47748271

46783128

153

15080344

9830124

368

31770708

27884779

583

47822113

46872637

154

15160956

9909749

369

31846390

27971597

584

47895948

46962155

155

15241523

9989439

370

31922061

28058432

585

47969777

47051682

156

15322045

10069194

371

31997719

28145286

586

48043599

47141218

157

15402524

10149014

372

32073365

28232157

587

48117416

47230762

158

15482959

10228896

373

32149000

28319045

588

48191227

47320316

159

15563350

10308842

374

32224622

28405951

589

48265031

47409879

160

15643699

10388851

375

32300232

28492875

590

48338830

47499450

161

15724005

10468921

376

32375831

28579815

591

48412622

47589030

162

15804270

10549052

377

32451417

28666774

592

48486409

47678619

163

15884492

10629245

378

32526992

28753749

593

48560190

47768217

164

15964673

10709497

379

32602555

28840741

594

48633964

47857823

165

16044814

10789809

380

32678107

28927751

595

48707733

47947438

166

16124913

10870180

381

32753646

29014778

596

48781495

48037062

167

16204973

10950610

382

32829175

29101821

597

48855252

48126695

168

16284993

11031098

383

32904691

29188882

598

48929003

48216336

169

16364973

11111643

384

32980196

29275959

599

49002747

48305986

170

16444914

11192245

385

33055690

29363053

600

49076486

48395644

171

16524817

11272904

386

33131172

29450164

601

49150219

48485312

172

16604680

11353619

387

33206643

29537291

602

49223946

48574987

173

16684506

11434390

388

33282102

29624435

603

49297668

48664671

174

16764294

11515215

389

33357550

29711596

604

49371383

48754364

175

16844045

11596095

390

33432987

29798773

605

49445093

48844065

176

16923758

11677030

391

33508413

29885966

606

49518797

48933775

177

17003435

11758018

392

33583827

29973176

607

49592495

49023493

178

17083075

11839059

393

33659230

30060402

608

49666187

49113220

179

17162679

11920153

394

33734623

30147644

609

49739874

49202955

180

17242247

12001299

395

33810004

30234902

610

49813554

49292699

181

17321779

12082497

396

33885374

30322176

611

49887229

49382451

182

17401276

12163747

397

33960734

30409467

612

49960899

49472211

183

17480738

12245048

398

34036082

30496773

613

50034562

49561980

184

17560165

12326400

399

34111419

30584095

614

50108220

49651757

185

17639558

12407801

400

34186746

30671433

615

50181872

49741542

186

17718917

12489253

401

34262062

30758787

616

50255519

49831335

187

17798241

12570754

402

34337367

30846156

617

50329160

49921137

188

17877532

12652304

403

34412662

30933541

618

50402795

50010947

189

17956790

12733903

404

34487945

31020942

619

50476425

50100765

190

18036015

12815550

405

34563218

31108358

620

50550049

50190592

191

18115206

12897245

406

34638481

31195790

621

50623667

50280427

192

18194366

12978988

407

34713733

31283237

622

50697280

50370270

193

18273492

13060777

408

34788974

31370699

623

50770887

50460120

194

18352587

13142614

409

34864205

31458177

624

50844489

50549980

195

18431650

13224497

410

34939426

31545670

625

50918085

50639847

196

18510681

13306426

411

35014636

31633178

626

50991676

50729722

197

18589681

13388401

412

35089836

31720702

627

51065261

50819605

198

18668650

13470421

413

35165025

31808240

628

51138840

50909497

199

18747588

13552486

414

35240204

31895794

629

51212414

50999396

200

18826495

13634596

415

35315373

31983362

630

51285983

51089304

201

18905372

13716750

416

35390532

32070946

631

51359546

51179219

202

18984219

13798949

417

35465680

32158544

632

51433104

51269143

203

19063035

13881191

418

35540819

32246157

633

51506656

51359074

204

19141822

13963476

419

35615947

32333785

634

51580203

51449013

205

19220579

14045805

420

35691065

32421428

635

51653744

51538961

206

19299307

14128176

421

35766173

32509085

636

51727280

51628916

207

19378006

14210590

422

35841272

32596757

637

51800811

51718879

208

19456676

14293046

423

35916360

32684443

638

51874336

51808850

209

19535318

14375544

424

35991438

32772144

639

51947856

51898828

210

19613930

14458083

425

36066507

32859859

640

52021370

51988815

211

19692515

14540664

426

36141565

32947589

641

52094880

52078809

212

19771071

14623286

427

36216614

33035333

642

52168384

52168811

213

19849600

14705948

428

36291653

33123092

214

19928101

14788651

429

36366682

33210864

NOTE 1: The first column is the number of errors (ne = number of NACK).

NOTE 2: The second column is the number of samples for the pass limit (nsp, ns=Number of Samples= number of NACK + ACK).

NOTE 3: The third column is the number of samples for the fail limit (nsf).

NOTE 4: An ideal DUT passes after 1074532 samples. The maximum test time is 52171625 samples. A DUT passes, if the maximum number of samples is reached and it did not fail before.

G.4.4 Simulation to derive the pass-fail limits for 0.001% BLER

The binomial distribution and its inverse are used to design the pass and fail limits. Note that this method is not unique and that other methods exist.

Where

– fail(..) is the error ratio for the fail limit.

– pass(..) is the error ratio for the pass limit.

– ER is the specified error ratio 1e-5.

– ne is the number of bad results. This is the variable in both equations.

– M is the Bad DUT factor M=1.5.

– df is the wrong decision probability of a single (ne, ns) co-ordinate for the fail limit.
It is found by simulation to be df = 2e-7.

– clp is the confidence level of a single (ne, ns) co-ordinate for the pass limit.
It is found by simulation to be clp = 0.9999999.

– qnbinom(..): The inverse cumulative function of the negative binomial distribution.

The simulation works as follows:

– A large population of limit DUTs with true ER = 1e-5 is decided against the pass and fail limits.

– clp and df are tuned such that CL (99.999 %) of the population passes and D (0.001 %) of the population fails.

– A population of Bad DUTs with true ER = M*1e-5 is decided against the same pass and fail limits.

– clp and df are tuned such that CL (99.999 %) of the population fails and D (0.001 %) of the population passes.

– The number of DUTs decrease during the simulation, as the decided DUTs leave the population. That number decreases with an approximately exponential characteristics. After 642 bad results all DUTs of the population are decided.

NOTE: The exponential decrease of the population is an optimal design goal for the decision co-ordinates (ne, ns), which can be achieved with other formulas or methods as well.