B.6 Multislot capabilities for Downlink Multi Carrier mobile stations

3GPP45.002GSM/EDGE Multiplexing and multiple access on the radio pathRelease 17TS

For mobile stations supporting DLMC configurations (see 3GPP TS 44.060), the multislot capability applicable to DLMC operation is dependent on the EGPRS (high) multislot class (see subclause B.1), on the Maximum number of downlink timeslots field (see 3GPP TS 24.008) and, if provided, on the Alternative EFTA multislot class field (see subclause B.5) as signalled by the mobile station as defined in Table B.2. Only mobile stations of multislot classes listed in Table B.2 can support DLMC. The equivalent multislot class does not apply for a mobile station supporting DLMC.

The values of Rx’ and Tx’ as defined in subclause B.4 apply for DLMC configurations.

The values of Sum’’ and Rx_Sum’’ apply for downlink DLMC configurations as defined below.

If the MS has not indicated support for Enhanced Flexible Timeslot Assignment (see 3GPP TS 24.008), then Rx’, Tx’ and Sum’’ correspond to Rx, Tx and Sum for the signalled multislot class and the switching times Tta, Ttb, Tra and Trb of the signalled multislot class shall apply.

If the MS has indicated support for Enhanced Flexible Timeslot Assignment (see 3GPP TS 24.008), then Rx’, Tx’ and Sum’’, Tta, Ttb, Tra and Trb all correspond to Rx, Tx, Sum, Tta, Ttb, Tra and Trb respectively as defined in subclause B.5.Rx_Sum’ is given by the Maximum Number of downlink timeslots indicated by the MS (see 3GPP TS 24.008) and applies irrespective of whether EFTA operation is used or not.

Sum’’:

Sum’’ is the total number of uplink TS and downlink TS (on either radio frequency channel) that can be used by the MS per TDMA frame. The MS must be able to support all combinations of integer values of 1 <= dX <= Rx’, and u <= Tx’ TS where 1 <= dX + u <= Sum’ (depending on the services supported by the MS). dX can be either of [d1, d2 …., d15, d16] depending on the maximum number of carriers supported by the MS, see 3GPP TS 24.008.

Rx_Sum’:

Rx_Sum’ is the total number of downlink TS (assigned across, at most, the maximum number of carriers, , supported by the mobile, see 3GPP TS24.008), that can be received by the MS per TDMA frame. The MS must be able to support all combinations of integer values of dX where 1 <=  <= Rx_Sum’ (depending on the services supported by the MS).

Annex C (informative):
CTSBCH Timeslot shifting example

With the following parameters :

– TNI = 4

– TNSCN = 9

TNSCO = 1 i.e. (TNS1 = TNS9,1 = (0, 3, 7, 6, 5, 2, 4, 1) and TNS2 = TNS9,0 = (0, 1, 4, 5, 7, 3, 6, 2)

– x0 = 2

– x1 = 3

– x2 = 5

– x3 = 4

and the timeslot shifting algorithm defined in section 6.3.3, the CTSBCH TN used in set 0 of the shifting sequence is :

(FN div 52) mod 51 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

TNS used 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2

CTSBCH TN 4 1 0 3 7 6 5 2 0 1 4 5 2 4 1 0 3 6

(FN div 52) mod 51 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

TNS used 2 2 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1

CTSBCH TN 2 0 3 7 3 6 2 0 1 4 5 7 6 5 2 4 1 0

(FN div 52) mod 51 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

TNS used 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1

CTSBCH TN 1 4 5 7 3 7 6 5 7 3 6 2 4 1 0

For the next sets, same mechanism applies, with

set 1 beginning with CTSBCH TN = 3

set 2 beginning with CTSBCH TN = 5

set 3 beginning with CTSBCH TN = 1

set 4 beginning with CTSBCH TN = 7

set 5 beginning with CTSBCH TN = 2

set 6 beginning with CTSBCH TN = 0

set 7 beginning with CTSBCH TN = 6

Annex D (informative):
COMPACT multiframe structure examples

In the figures, the 52-multiframe number (MFN) shall have a range of 0 to 3 and can be calculated from the TDMA frame number (FN) as follows:

MFN = (FN div 52) mod 4

For COMPACT, timeslot mapping and rotation of the control channels is used such that control channels belonging to a serving time group are rotated over odd timeslot numbers as follows: 7, 5, 3, 1, 7, 5,  . The rotation occurs between frame numbers (FN) mod 52 = 3 and 4. The timeslot mapping and rotation of the control channels in this manner allows the mobile station to measure the received signal level from surrounding cells in its normal measurement window. Since the rotation repeats itself every 208 frames, the 52-multiframe number (MFN) allows the mobile station to determine its location in the time group rotation during selection and re-selection.

The following relates to Figures D.1 through D.7:

i) B(x)y = time group y uses CPBCCH in block x;

ii) C(x)y = time group y uses CPCCCH in block x;

iii) PTCCH = PTCCH as norma;

iv) CFCCHy = time group y uses CFCCH;

v) CSCHy = time group y uses CSCH;

vi) IDLE = idle burst;

vii) Xy = block designated as idle for time group y;

viii) Empty = used for traffic as normal.

Frames 0-51 of a 208-multiframe

Frames 0-51 of a 208-multiframe

Frames 0-51 of a 208-multiframe

Frames 0-51 of a 208-multiframe

MFN = 0

MFN = 0

MFN = 0

MFN = 0

TG = 0

TG = 1

TG = 2

TG = 3

TS

FN

0

1

2

3

4

5

6

7

TS

FN

0

1

2

3

4

5

6

7

TS

FN

0

1

2

3

4

5

6

7

TS

FN

0

1

2

3

4

5

6

7

0

B(0)0

X1

X2

X3

0

X0

B(0)1

X2

X3

0

X0

X1

B(0)2

X3

0

X0

X1

X2

B(0)3

1

B(0)0

X1

X2

X3

1

X0

B(0)1

X2

X3

1

X0

X1

B(0)2

X3

1

X0

X1

X2

B(0)3

2

B(0)0

X1

X2

X3

2

X0

B(0)1

X2

X3

2

X0

X1

B(0)2

X3

2

X0

X1

X2

B(0)3

3

B(0)0

X1

X2

X3

3

X0

B(0)1

X2

X3

3

X0

X1

B(0)2

X3

3

X0

X1

X2

B(0)3

4

4

4

4

5

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

9

9

9

9

10

10

10

10

11

11

11

11

12

PTCCH

12

PTCCH

12

PTCCH

12

PTCCH

13

X1

X2

X3

C(3)0

13

C(3)1

X2

X3

X0

13

X1

C(3)2

X3

X0

13

X1

X2

C(3)3

X0

14

X1

X2

X3

C(3)0

14

C(3)1

X2

X3

X0

14

X1

C(3)2

X3

X0

14

X1

X2

C(3)3

X0

15

X1

X2

X3

C(3)0

15

C(3)1

X2

X3

X0

15

X1

C(3)2

X3

X0

15

X1

X2

C(3)3

X0

16

X1

X2

X3

C(3)0

16

C(3)1

X2

X3

X0

16

X1

C(3)2

X3

X0

16

X1

X2

C(3)3

X0

17

17

17

17

18

18

18

18

19

19

19

19

20

20

20

20

21

21

21

21

22

22

22

22

23

23

23

23

24

24

24

24

25

IDLE

CFCCH0

25

ID

CFCCH1

IDLE

25

IDLE

CFCCH2

IDLE

25

IDLE

CFCCH3

IDLE

26

X1

X2

X3

C(6)0

26

C(6)1

X2

X3

X0

26

X1

C(6)2

X3

X0

26

X1

X2

C(6)3

X0

27

X1

X2

X3

C(6)0

27

C(6)1

X2

X3

X0

27

X1

C(6)2

X3

X0

27

X1

X2

C(6)3

X0

28

X1

X2

X3

C(6)0

28

C(6)1

X2

X3

X0

28

X1

C(6)2

X3

X0

28

X1

X2

C(6)3

X0

29

X1

X2

X3

C(6)0

29

C(6)1

X2

X3

X0

29

X1

C(6)2

X3

X0

29

X1

X2

C(6)3

X0

30

30

30

30

31

31

31

31

32

32

32

32

33

33

33

33

34

34

34

34

35

35

35

35

36

36

36

36

37

37

37

37

38

PTCCH

38

PTCCH

38

PTCCH

38

PTCCH

39

X1

X2

X3

C(9)0

39

C(9)1

X2

X3

X0

39

X1

C(9)2

X3

X0

39

X1

X2

C(9)3

X0

40

X1

X2

X3

C(9)0

40

C(9)1

X2

X3

X0

40

X1

C(9)2

X3

X0

40

X1

X2

C(9)3

X0

41

X1

X2

X3

C(9)0

41

C(9)1

X2

X3

X0

41

X1

C(9)2

X3

X0

41

X1

X2

C(9)3

X0

42

X1

X2

X3

C(9)0

42

C(9)1

X2

X3

X0

42

X1

C(9)2

X3

X0

42

X1

X2

C(9)3

X0

43

43

43

43

44

44

44

44

45

45

45

45

46

46

46

46

47

47

47

47

48

48

48

48

49

49

49

49

50

50

50

50

51

IDLE

CSCH0

51

ID

CSCH1

IDLE

51

IDLE

CSCH2

IDLE

51

IDLE

CSCH3

IDLE

Figure D.1: COMPACT downlink 52-multiframe structure using 4 time groups for nominal cells (based on an assignment of 1 CPBCCH and 3 CPCCCHs with NIB_CCCH_0 = NIB_CCCH_1 = NIB_CCCH_2 = NIB_CCCH_3 = 4). NIB_CCCH is not broadcast for serving cell time group

NOTE: For uplink 52-multiframe structure (based on an assignment of 16 prioritized CPRACHs, see subclause 6.3.2.2.3a), replace B( ) by R( ) where R( ) denotes CPRACH, move down one block, and rotate according to subclause 6.3.2.1. Replace C( ) by R( ) and move down one block. CPRACH in general can be mapped as PRACH in table 6 of clause 7.

Frames 0-51 of a 208-multiframe

Frames 0-51 of a 208-multiframe

Frames 0-51 of a 208-multiframe

MFN = 0

MFN = 0

MFN = 0

TG = 0

TG = 1

TG = 2

TS

FN

0

1

2

3

4

5

6

7

TS

FN

0

1

2

3

4

5

6

7

TS

FN

0

1

2

3

4

5

6

7

0

B(0)0

X1

X2

0

X0

B(0)1

X2

0

X0

X1

B(0)2

1

B(0)0

X1

X2

1

X0

B(0)1

X2

1

X0

X1

B(0)2

2

B(0)0

X1

X2

2

X0

B(0)1

X2

2

X0

X1

B(0)2

3

B(0)0

X1

X2

3

X0

B(0)1

X2

3

X0

X1

B(0)2

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

9

9

9

10

10

10

11

11

11

12

PTCCH

12

PTCCH

12

PTCCH

13

X1

X2

C(3)0

13

C(3)1

X2

X0

13

X1

C(3)2

X0

14

X1

X2

C(3)0

14

C(3)1

X2

X0

14

X1

C(3)2

X0

15

X1

X2

C(3)0

15

C(3)1

X2

X0

15

X1

C(3)2

X0

16

X1

X2

C(3)0

16

C(3)1

X2

X0

16

X1

C(3)2

X0

17

17

17

18

18

18

19

19

19

20

20

20

21

21

21

22

22

22

23

23

23

24

24

24

25

IDLE

CFCCH0

25

ID

CFCCH1

IDLE

25

IDLE

CFCCH2

IDLE

26

X1

X2

C(6)0

26

C(6)1

X2

X0

26

X1

C(6)2

X0

27

X1

X2

C(6)0

27

C(6)1

X2

X0

27

X1

C(6)2

X0

28

X1

X2

C(6)0

28

C(6)1

X2

X0

28

X1

C(6)2

X0

29

X1

X2

C(6)0

29

C(6)1

X2

X0

29

X1

C(6)2

X0

30

30

30

31

31

31

32

32

32

33

33

33

34

34

34

35

35

35

36

36

36

37

37

37

38

PTCCH

38

PTCCH

38

PTCCH

39

X1

X2

C(9)0

39

C(9)1

X2

X0

39

X1

C(9)2

X0

40

X1

X2

C(9)0

40

C(9)1

X2

X0

40

X1

C(9)2

X0

41

X1

X2

C(9)0

41

C(9)1

X2

X0

41

X1

C(9)2

X0

42

X1

X2

C(9)0

42

C(9)1

X2

X0

42

X1

C(9)2

X0

43

43

43

44

44

44

45

45

45

46

46

46

47

47

47

48

48

48

49

49

49

50

50

50

51

IDLE

CSCH0

51

ID

CSCH1

IDLE

51

IDLE

CSCH2

IDLE

Figure D.2: COMPACT downlink 52-multiframe structure using 3 time groups for nominal cells (based on an assignment of 1 CPBCCH and 3 CPCCCHs with NIB_CCCH_0 = NIB_CCCH_1 = NIB_CCCH_2 = 4, NIB_CCCH_3 = 0). NIB_CCCHis not broadcast for serving cell time group

NOTE: For uplink 52-multiframe structure (based on an assignment of 16 prioritized CPRACHs, see subclause 6.3.2.2.3a), replace B( ) by R( ) where R( ) denotes CPRACH, move down one block, and rotate according to subclause 6.3.2.1. Replace C( ) by R( ) and move down one block. CPRACH in general can be mapped as PRACH in table 6 of clause 7.

Frames 0-51 of a 208-multiframe

Frames 0-51 of a 208-multiframe

Frames 0-51 of a 208-multiframe

Frames 0-51 of a 208-multiframe

MFN = 0

MFN = 0

MFN = 0

MFN = 0

TG = 0

TG = 1

TG = 2

TG = 3

TS

FN

0

1

2

3

4

5

6

7

TS

FN

0

1

2

3

4

5

6

7

TS

FN

0

1

2

3

4

5

6

7

TS

FN

0

1

2

3

4

5

6

7

0

X3

B(0)0

X1

X1

X2

X2

X3

X3

0

X0

X0

X0

B(0)1

X2

X2

X3

X3

0

X0

X0

X1

X1

X1

B(0)2

X3

X3

0

X0

X0

X1

X1

X2

X2

X2

B(0)3

1

X3

B(0)0

X1

X1

X2

X2

X3

X3

1

X0

X0

X0

B(0)1

X2

X2

X3

X3

1

X0

X0

X1

X1

X1

B(0)2

X3

X3

1

X0

X0

X1

X1

X2

X2

X2

B(0)3

2

X3

B(0)0

X1

X1

X2

X2

X3

X3

2

X0

X0

X0

B(0)1

X2

X2

X3

X3

2

X0

X0

X1

X1

X1

B(0)2

X3

X3

2

X0

X0

X1

X1

X2

X2

X2

B(0)3

3

X3

B(0)0

X1

X1

X2

X2

X3

X3

3

X0

X0

X0

B(0)1

X2

X2

X3

X3

3

X0

X0

X1

X1

X1

B(0)2

X3

X3

3

X0

X0

X1

X1

X2

X2

X2

B(0)3

4

4

4

4

5

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

9

9

9

9

10

10

10

10

11

11

11

11

12

PTCCH

12

PTCCH

12

PTCCH

12

PTCCH

13

X1

X1

X2

X2

X3

X3

X3

C(3)0

13

X0

C(3)1

X2

X2

X3

X3

X0

X0

13

X1

X1

X1

C(3)2

X3

X3

X0

X0

13

X1

X1

X2

X2

X2

C(3)3

X0

X0

14

X1

X1

X2

X2

X3

X3

X3

C(3)0

14

X0

C(3)1

X2

X2

X3

X3

X0

X0

14

X1

X1

X1

C(3)2

X3

X3

X0

X0

14

X1

X1

X2

X2

X2

C(3)3

X0

X0

15

X1

X1

X2

X2

X3

X3

X3

C(3)0

15

X0

C(3)1

X2

X2

X3

X3

X0

X0

15

X1

X1

X1

C(3)2

X3

X3

X0

X0

15

X1

X1

X2

X2

X2

C(3)3

X0

X0

16

X1

X1

X2

X2

X3

X3

X3

C(3)0

16

X0

C(3)1

X2

X2

X3

X3

X0

X0

16

X1

X1

X1

C(3)2

X3

X3

X0

X0

16

X1

X1

X2

X2

X2

C(3)3

X0

X0

17

17

17

17

18

18

18

18

19

19

19

19

20

20

20

20

21

21

21

21

22

22

22

22

23

23

23

23

24

24

24

24

25

IDLE

CFCCH0

25

ID

CFCCH1

IDLE

25

IDLE

CFCCH2

IDLE

25

IDLE

CFCCH3

IDLE

26

X1

X1

X2

X2

X3

X3

X3

C(6)0

26

X0

C(6)1

X2

X2

X3

X3

X0

X0

26

X1

X1

X1

C(6)2

X3

X3

X0

X0

26

X1

X1

X2

X2

X2

C(6)3

X0

X0

27

X1

X1

X2

X2

X3

X3

X3

C(6)0

27

X0

C(6)1

X2

X2

X3

X3

X0

X0

27

X1

X1

X1

C(6)2

X3

X3

X0

X0

27

X1

X1

X2

X2

X2

C(6)3

X0

X0

28

X1

X1

X2

X2

X3

X3

X3

C(6)0

28

X0

C(6)1

X2

X2

X3

X3

X0

X0

28

X1

X1

X1

C(6)2

X3

X3

X0

X0

28

X1

X1

X2

X2

X2

C(6)3

X0

X0

29

X1

X1

X2

X2

X3

X3

X3

C(6)0

29

X0

C(6)1

X2

X2

X3

X3

X0

X0

29

X1

X1

X1

C(6)2

X3

X3

X0

X0

29

X1

X1

X2

X2

X2

C(6)3

X0

X0

30

30

30

30

31

31

31

31

32

32

32

32

33

33

33

33

34

34

34

34

35

35

35

35

36

36

36

36

37

37

37

37

38

PTCCH

38

PTCCH

38

PTCCH

38

PTCCH

39

X1

X1

X2

X2

X3

X3

X3

C(9)0

39

X0

C(9)1

X2

X2

X3

X3

X0

X0

39

X1

X1

X1

C(9)2

X3

X3

X0

X0

39

X1

X1

X2

X2

X2

C(9)3

X0

X0

40

X1

X1

X2

X2

X3

X3

X3

C(9)0

40

X0

C(9)1

X2

X2

X3

X3

X0

X0

40

X1

X1

X1

C(9)2

X3

X3

X0

X0

40

X1

X1

X2

X2

X2

C(9)3

X0

X0

41

X1

X1

X2

X2

X3

X3

X3

C(9)0

41

X0

C(9)1

X2

X2

X3

X3

X0

X0

41

X1

X1

X1

C(9)2

X3

X3

X0

X0

41

X1

X1

X2

X2

X2

C(9)3

X0

X0

42

X1

X1

X2

X2

X3

X3

X3

C(9)0

42

X0

C(9)1

X2

X2

X3

X3

X0

X0

42

X1

X1

X1

C(9)2

X3

X3

X0

X0

42

X1

X1

X2

X2

X2

C(9)3

X0

X0

43

43

43

43

44

44

44

44

45

45

45

45

46

46

46

46

47

47

47

47

48

48

48

48

49

49

49

49

50

50

50

50

51

IDLE

CSCH0

51

ID

CSCH1

IDLE

51

IDLE

CSCH2

IDLE

51

IDLE

CSCH3

IDLE

Figure D.3: COMPACT downlink 52-multiframe structure using 4 time groups for large cells (based on an assignment of 1 CPBCCH and 3 CPCCCHs with NIB_CCCH_0 = NIB_CCCH_1 = NIB_CCCH_2 = NIB_CCCH_3 = 4). NIB_CCCH is not broadcast for serving cell time group

NOTE: For uplink 52-multiframe structure (based on an assignment of 16 prioritized CPRACHs, see subclause 6.3.2.2.3a), replace B( ) by R( ) where R( ) denotes CPRACH, move down one block, and rotate according to subclause 6.3.2.1. Replace C( ) by R( ) and move down one block. CPRACH in general can be mapped as PRACH in table 6 of clause 7.

Frames 0-51 of a 208-multiframe

Frames 0-51 of a 208-multiframe

Frames 0-51 of a 208-multiframe

MFN = 0

MFN = 0

MFN = 0

TG = 0

TG = 1

TG = 2

TS

FN

0

1

2

3

4

5

6

7

TS

FN

0

1

2

3

4

5

6

7

TS

FN

0

1

2

3

4

5

6

7

0

B(0)0

X1

X1

X12

X2

X2

0

X0

X0

X0

B(0)1

X2

X2

X2

0

X0

X0

X01

X1

X1

B(0)2

1

B(0)0

X1

X1

X12

X2

X2

1

X0

X0

X0

B(0)1

X2

X2

X2

1

X0

X0

X01

X1

X1

B(0)2

2

B(0)0

X1

X1

X12

X2

X2

2

X0

X0

X0

B(0)1

X2

X2

X2

2

X0

X0

X01

X1

X1

B(0)2

3

B(0)0

X1

X1

X12

X2

X2

3

X0

X0

X0

B(0)1

X2

X2

X2

3

X0

X0

X01

X1

X1

B(0)2

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

9

9

9

10

10

10

11

11

11

12

PTCCH

12

PTCCH

12

PTCCH

13

X1

X1

X12

X2

X2

C(3)0

13

X0

C(3)1

X2

X2

X2

X0

X0

13

X01

X1

X1

C(3)2

X0

X0

14

X1

X1

X12

X2

X2

C(3)0

14

X0

C(3)1

X2

X2

X2

X0

X0

14

X01

X1

X1

C(3)2

X0

X0

15

X1

X1

X12

X2

X2

C(3)0

15

X0

C(3)1

X2

X2

X2

X0

X0

15

X01

X1

X1

C(3)2

X0

X0

16

X1

X1

X12

X2

X2

C(3)0

16

X0

C(3)1

X2

X2

X2

X0

X0

16

X01

X1

X1

C(3)2

X0

X0

17

17

17

18

18

18

19

19

19

20

20

20

21

21

21

22

22

22

23

23

23

24

24

24

25

IDLE

CFCCH0

25

ID

CFCCH1

IDLE

25

IDLE

CFCCH2

IDLE

26

X1

X1

X12

X2

X2

C(6)0

26

X0

C(6)1

X2

X2

X2

X0

X0

26

X01

X1

X1

C(6)2

X0

X0

27

X1

X1

X12

X2

X2

C(6)0

27

X0

C(6)1

X2

X2

X2

X0

X0

27

X01

X1

X1

C(6)2

X0

X0

28

X1

X1

X12

X2

X2

C(6)0

28

X0

C(6)1

X2

X2

X2

X0

X0

28

X01

X1

X1

C(6)2

X0

X0

29

X1

X1

X12

X2

X2

C(6)0

29

X0

C(6)1

X2

X2

X2

X0

X0

29

X01

X1

X1

C(6)2

X0

X0

30

30

30

31

31

31

32

32

32

33

33

33

34

34

34

35

35

35

36

36

36

37

37

37

38

PTCCH

38

PTCCH

38

PTCCH

39

X1

X1

X12

X2

X2

C(9)0

39

X0

C(9)1

X2

X2

X2

X0

X0

39

X01

X1

X1

C(9)2

X0

X0

40

X1

X1

X12

X2

X2

C(9)0

40

X0

C(9)1

X2

X2

X2

X0

X0

40

X01

X1

X1

C(9)2

X0

X0

41

X1

X1

X12

X2

X2

C(9)0

41

X0

C(9)1

X2

X2

X2

X0

X0

41

X01

X1

X1

C(9)2

X0

X0

42

X1

X1

X12

X2

X2

C(9)0

42

X0

C(9)1

X2

X2

X2

X0

X0

42

X01

X1

X1

C(9)2

X0

X0

43

43

43

44

44

44

45

45

45

46

46

46

47

47

47

48

48

48

49

49

49

50

50

50

51

IDLE

CSCH0

51

ID

CSCH1

IDLE

51

IDLE

CSCH2

IDLE

Figure D.4: COMPACT downlink 52-multiframe structure using 3 time groups for large cells (based on an assignment of 1 CPBCCH and 3 CPCCCHs with NIB_CCCH_0 = NIB_CCCH_1 = NIB_CCCH_2 = 4, NIB_CCCH_3 = 0). NIB_CCCH is not broadcast for serving cell time group

NOTE: For uplink 52-multiframe structure (based on an assignment of 16 prioritized CPRACHs, see subclause 6.3.2.2.3a), replace B( ) by R( ) where R( ) denotes CPRACH, move down one block, and rotate according to subclause 6.3.2.1. Replace C( ) by R( ) and move down one block. CPRACH in general can be mapped as PRACH in table 6 of clause 7.

Frames 0-51 of a 208-multiframe

Frames 52-103 of a 208-multiframe

Frames 104-155 of a 208-multiframe

Frames 156-207 of a 208-multiframe

MFN = 0

MFN = 1

MFN = 2

MFN = 3

TS

FN

0

1

2

3

4

5

6

7

TS

FN

0

1

2

3

4

5

6

7

TS

FN

0

1

2

3

4

5

6

7

TS

FN

0

1

2

3

4

5

6

7

0

B(0)0

X1

X2

X3

52

X1

X2

X3

B(0)0

104

X2

X3

B(0)0

X1

156

X3

B(0)0

X1

X2

1

B(0)0

X1

X2

X3

53

X1

X2

X3

B(0)0

105

X2

X3

B(0)0

X1

157

X3

B(0)0

X1

X2

2

B(0)0

X1

X2

X3

54

X1

X2

X3

B(0)0

106

X2

X3

B(0)0

X1

158

X3

B(0)0

X1

X2

3

B(0)0

X1

X2

X3

55

X1

X2

X3

B(0)0

107

X2

X3

B(0)0

X1

159

X3

B(0)0

X1

X2

4

56

108

160

5

57

109

161

6

58

110

162

7

59

111

163

8

60

112

164

9

61

113

165

10

62

114

166

11

63

115

167

12

PTCCH

64

PTCCH

116

PTCCH

168

PTCCH

13

X1

X2

X3

C(3)0

65

X2

X3

C(3)0

X1

117

X3

C(3)0

X1

X2

169

C(3)0

X1

X2

X3

14

X1

X2

X3

C(3)0

66

X2

X3

C(3)0

X1

118

X3

C(3)0

X1

X2

170

C(3)0

X1

X2

X3

15

X1

X2

X3

C(3)0

67

X2

X3

C(3)0

X1

119

X3

C(3)0

X1

X2

171

C(3)0

X1

X2

X3

16

X1

X2

X3

C(3)0

68

X2

X3

C(3)0

X1

120

X3

C(3)0

X1

X2

172

C(3)0

X1

X2

X3

17

69

121

173

18

70

122

174

19

71

123

175

20

72

124

176

21

73

125

177

22

74

126

178

23

75

127

179

24

76

128

180

25

IDLE

CFCCH0

77

IDLE

CFCCH1

IDLE

129

IDLE

CFCCH2

IDLE

181

ID

CFCCH3

IDLE

26

X1

X2

X3

C(6)0

78

X2

X3

C(6)0

X1

130

X3

C(6)0

X1

X2

182

C(6)0

X1

X2

X3

27

X1

X2

X3

C(6)0

79

X2

X3

C(6)0

X1

131

X3

C(6)0

X1

X2

183

C(6)0

X1

X2

X3

28

X1

X2

X3

C(6)0

80

X2

X3

C(6)0

X1

132

X3

C(6)0

X1

X2

184

C(6)0

X1

X2

X3

29

X1

X2

X3

C(6)0

81

X2

X3

C(6)0

X1

133

X3

C(6)0

X1

X2

185

C(6)0

X1

X2

X3

30

82

134

186

31

83

135

187

32

84

136

188

33

85

137

189

34

86

138

190

35

87

139

191

36

88

140

192

37

89

141

193

38

PTCCH

90

PTCCH

142

PTCCH

194

PTCCH

39

X1

X2

X3

C(9)0

91

X2

X3

C(9)0

X1

143

X3

C(9)0

X1

X2

195

C(9)0

X1

X2

X3

40

X1

X2

X3

C(9)0

92

X2

X3

C(9)0

X1

144

X3

C(9)0

X1

X2

196

C(9)0

X1

X2

X3

41

X1

X2

X3

C(9)0

93

X2

X3

C(9)0

X1

145

X3

C(9)0

X1

X2

197

C(9)0

X1

X2

X3

42

X1

X2

X3

C(9)0

94

X2

X3

C(9)0

X1

146

X3

C(9)0

X1

X2

198

C(9)0

X1

X2

X3

43

95

147

199

44

96

148

200

45

97

149

201

46

98

150

202

47

99

151

203

48

100

152

204

49

101

153

205

50

102

154

206

51

IDLE

CSCH0

103

IDLE

CSCH1

IDLE

155

IDLE

CSCH2

IDLE

207

ID

CSCH3

IDLE

Figure D.5: Example of COMPACT downlink timeslot mapping and rotation of control channels using 4 time groups for nominal cells (based on an assignment of 1 CPBCCH and 3 CPCCCHs with NIB_CCCH_0 = NIB_CCCH_1 = NIB_CCCH_2 = NIB_CCCH_3 = 4). TG = 0 is illustrated. NIB_CCCH is not broadcast for serving cell time group

NOTE: For uplink 52-multiframe structure (based on an assignment of 16 prioritized CPRACHs, see subclause 6.3.2.2.3a), replace B( ) by R( ) where R( ) denotes CPRACH, move down one block, and rotate according to subclause 6.3.2.1. Replace C( ) by R( ) and move down one block. CPRACH in general can be mapped as PRACH in table 6 of clause 7.

Frames 0-51 of a 208-multiframe

Frames 52-103 of a 208-multiframe

Frames 104-155 of a 208-multiframe

Frames 156-207 of a 208-multiframe

MFN = 0

MFN = 1

MFN = 2

MFN = 3

TS

FN

0

1

2

3

4

5

6

7

TS

FN

0

1

2

3

4

5

6

7

TS

FN

0

1

2

3

4

5

6

7

TS

FN

0

1

2

3

4

5

6

7

0

B(0)0

X1

X2

52

X1

X2

B(0)0

104

X2

B(0)0

X1

156

B(0)0

X1

X2

1

B(0)0

X1

X2

53

X1

X2

B(0)0

105

X2

B(0)0

X1

157

B(0)0

X1

X2

2

B(0)0

X1

X2

54

X1

X2

B(0)0

106

X2

B(0)0

X1

158

B(0)0

X1

X2

3

B(0)0

X1

X2

55

X1

X2

B(0)0

107

X2

B(0)0

X1

159

B(0)0

X1

X2

4

56

108

160

5

57

109

161

6

58

110

162

7

59

111

163

8

60

112

164

9

61

113

165

10

62

114

166

11

63

115

167

12

PTCCH

64

PTCCH

116

PTCCH

168

PTCCH

13

X1

X2

C(3)0

65

X2

C(3)0

X1

117

C(3)0

X1

X2

169

C(3)0

X1

X2

14

X1

X2

C(3)0

66

X2

C(3)0

X1

118

C(3)0

X1

X2

170

C(3)0

X1

X2

15

X1

X2

C(3)0

67

X2

C(3)0

X1

119

C(3)0

X1

X2

171

C(3)0

X1

X2

16

X1

X2

C(3)0

68

X2

C(3)0

X1

120

C(3)0

X1

X2

172

C(3)0

X1

X2

17

69

121

173

18

70

122

174

19

71

123

175

20

72

124

176

21

73

125

177

22

74

126

178

23

75

127

179

24

76

128

180

25

IDLE

CFCCH0

77

IDLE

CFCCH1

IDLE

129

IDLE

CFCCH2

IDLE

181

ID

CFCCH3

IDLE

26

X1

X2

C(6)0

78

X2

C(6)0

X1

130

C(6)0

X1

X2

182

C(6)0

X1

X2

27

X1

X2

C(6)0

79

X2

C(6)0

X1

131

C(6)0

X1

X2

183

C(6)0

X1

X2

28

X1

X2

C(6)0

80

X2

C(6)0

X1

132

C(6)0

X1

X2

184

C(6)0

X1

X2

29

X1

X2

C(6)0

81

X2

C(6)0

X1

133

C(6)0

X1

X2

185

C(6)0

X1

X2

30

82

134

186

31

83

135

187

32

84

136

188

33

85

137

189

34

86

138

190

35

87

139

191

36

88

140

192

37

89

141

193

38

PTCCH

90

PTCCH

142

PTCCH

194

PTCCH

39

X1

X2

C(9)0

91

X2

C(9)0

X1

143

C(9)0

X1

X2

195

C(9)0

X1

X2

40

X1

X2

C(9)0

92

X2

C(9)0

X1

144

C(9)0

X1

X2

196

C(9)0

X1

X2

41

X1

X2

C(9)0

93

X2

C(9)0

X1

145

C(9)0

X1

X2

197

C(9)0

X1

X2

42

X1

X2

C(9)0

94

X2

C(9)0

X1

146

C(9)0

X1

X2

198

C(9)0

X1

X2

43

95

147

199

44

96

148

200

45

97

149

201

46

98

150

202

47

99

151

203

48

100

152

204

49

101

153

205

50

102

154

206

51

IDLE

CSCH0

103

IDLE

CSCH1

IDLE

155

IDLE

CSCH2

IDLE

207

ID

CSCH3

IDLE

Figure D.6: Example of COMPACT downlink timeslot mapping and rotation of control channels using 3 time groups for nominal cells (based on an assignment of 1 CPBCCH and 3 CPCCCHs with NIB_CCCH_0 = NIB_CCCH_1 = NIB_CCCH_2 = 4, NIB_CCCH_3 = 0). TG = 0 is illustrated. NIB_CCCH is not broadcast for serving cell time group

NOTE: For uplink 52-multiframe structure (based on an assignment of 16 prioritized CPRACHs, see subclause 6.3.2.2.3a), replace B( ) by R( ) where R( ) denotes CPRACH, move down one block, and rotate according to subclause 6.3.2.1. Replace C( ) by R( ) and move down one block. CPRACH in general can be mapped as PRACH in table 6 of clause 7.

Frames 0-51 of a 208-multiframe

Frames 52-103 of a 208-multiframe

Frames 104-155 of a 208-multiframe

Frames 156-207 of a 208-multiframe

MFN = 0

MFN = 1

MFN = 2

MFN = 3

TS

FN

0

1

2

3

4

5

6

7

TS

FN

0

1

2

3

4

5

6

7

TS

FN

0

1

2

3

4

5

6

7

TS

FN

0

1

2

3

4

5

6

7

0

B(0)0

X1

X2

X3

52

X1

X2

X3

B(0)0

104

X2

X3

B(0)0

X1

156

X3

B(0)0

X1

X2

1

B(0)0

X1

X2

X3

53

X1

X2

X3

B(0)0

105

X2

X3

B(0)0

X1

157

X3

B(0)0

X1

X2

2

B(0)0

X1

X2

X3

54

X1

X2

X3

B(0)0

106

X2

X3

B(0)0

X1

158

X3

B(0)0

X1

X2

3

B(0)0

X1

X2

X3

55

X1

X2

X3

B(0)0

107

X2

X3

B(0)0

X1

159

X3

B(0)0

X1

X2

4

X1

56

X1

108

X1

160

X1

5

X1

57

X1

109

X1

161

X1

6

X1

58

X1

110

X1

162

X1

7

X1

59

X1

111

X1

163

X1

8

60

112

164

9

61

113

165

10

62

114

166

11

63

115

167

12

PTCCH

64

PTCCH

116

PTCCH

168

PTCCH

13

X1

X2

X3

C(3)0

65

X2

X3

C(3)0

X1

117

X3

C(3)0

X1

X2

169

C(3)0

X1

X2

X3

14

X1

X2

X3

C(3)0

66

X2

X3

C(3)0

X1

118

X3

C(3)0

X1

X2

170

C(3)0

X1

X2

X3

15

X1

X2

X3

C(3)0

67

X2

X3

C(3)0

X1

119

X3

C(3)0

X1

X2

171

C(3)0

X1

X2

X3

16

X1

X2

X3

C(3)0

68

X2

X3

C(3)0

X1

120

X3

C(3)0

X1

X2

172

C(3)0

X1

X2

X3

17

69

121

173

18

70

122

174

19

71

123

175

20

72

124

176

21

73

125

177

22

74

126

178

23

75

127

179

24

76

128

180

25

IDLE

CFCCH0

77

IDLE

CFCCH1

IDLE

129

IDLE

CFCCH2

IDLE

181

ID

CFCCH3

IDLE

26

X1

X2

X3

C(6)0

78

X2

X3

C(6)0

X1

130

X3

C(6)0

X1

X2

182

C(6)0

X1

X2

X3

27

X1

X2

X3

C(6)0

79

X2

X3

C(6)0

X1

131

X3

C(6)0

X1

X2

183

C(6)0

X1

X2

X3

28

X1

X2

X3

C(6)0

80

X2

X3

C(6)0

X1

132

X3

C(6)0

X1

X2

184

C(6)0

X1

X2

X3

29

X1

X2

X3

C(6)0

81

X2

X3

C(6)0

X1

133

X3

C(6)0

X1

X2

185

C(6)0

X1

X2

X3

30

82

134

186

31

83

135

187

32

84

136

188

33

85

137

189

34

86

138

190

35

87

139

191

36

88

140

192

37

89

141

193

38

PTCCH

90

PTCCH

142

PTCCH

194

PTCCH

39

X1

X2

X3

C(9)0

91

X2

X3

C(9)0

X1

143

X3

C(9)0

X1

X2

195

C(9)0

X1

X2

X3

40

X1

X2

X3

C(9)0

92

X2

X3

C(9)0

X1

144

X3

C(9)0

X1

X2

196

C(9)0

X1

X2

X3

41

X1

X2

X3

C(9)0

93

X2

X3

C(9)0

X1

145

X3

C(9)0

X1

X2

197

C(9)0

X1

X2

X3

42

X1

X2

X3

C(9)0

94

X2

X3

C(9)0

X1

146

X3

C(9)0

X1

X2

198

C(9)0

X1

X2

X3

43

95

147

199

44

96

148

200

45

97

149

201

46

98

150

202

47

99

151

203

48

100

152

204

49

101

153

205

50

102

154

206

51

IDLE

CSCH0

103

IDLE

CSCH1

IDLE

155

IDLE

CSCH2

IDLE

207

ID

CSCH3

IDLE

Figure D.7: Example of COMPACT downlink timeslot mapping and rotation of control channels using 4 time groups for nominal cells (based on an assignment of 1 CPBCCH and 3 CPCCCHs with NIB_CCCH_0 = NIB_CCCH_2 = NIB_CCCH_3 = 4, NIB_CCCH_1 = 5). TG = 0 is illustrated. NIB_CCCH is not broadcast for serving cell time group

NOTE: For uplink 52-multiframe structure (based on an assignment of 16 prioritized CPRACHs, see subclause 6.3.2.2.3a), replace B( ) by R( ) where R( ) denotes CPRACH, move down one block, and rotate according to subclause 6.3.2.1. Replace C( ) by R( ) and move down one block. CPRACH in general can be mapped as PRACH in table 6 of clause 7.

Annex E (informative):
Example illustrations of neighbour cell measurements for downlink dual carrier MS

Figure E.1 illustrates possible switching and measurement timings for downlink dual carrier MSs that have a higher equivalent multislot class compared to the signalled multislot class (see subclause B.4).

Figure E.1

Annex F (informative):
Illustration of mapping restrictions in Downlink Multi Carrier

The mapping restrictions for DLMC described in subclause 6.2.7 can be illustrated by the following example with 5 carriers assigned in BTTI mode:

max_sep: 22 (corresponding to a supported DLMC – Maximum BW of 5 MHz, see 3GPP TS 45.005).

num_tdma_frames: 4.

num_carriers: 5.

arfcn[1..num_tdma_frames][1..num_carriers]: see the table below.

TDMA frame index (i)

arfcn[i][1]

arfcn[i][2]

arfcn[i][3]

arfcn[i][4]

arfcn[i][5]

1

1

10

19

37

23

2

46

1

10

28

23

3

37

46

1

19

23

4

1

10

19

37

23

Contiguous reception:

Step 1: Set carrier 1 as the anchor, and test whether carrier 2 can be selected. As shown in the table below, carrier separation is not satisfied for one or more of the 4 TDMA frames (in this case not satisfied for the second TDMA frame), hence carrier 2 is not selected. Carrier selection for the current anchor stops. The selected group of carriers for anchor carrier 1 is {1}. Since this is the first group of carriers selected, it is set as the currently selected group of carriers.

TDMA frame index (i)

arfcn[i][1]

arfcn[i][2]

min arfcn

max arfcn

delta arfcn

delta arfcn <= max_sep?

1

1

10

1

10

9

Yes

2

46

1

1

46

45

No

3

37

46

37

46

9

Yes

4

1

10

1

10

9

Yes

Step 2: Set carrier 2 as the anchor, and test whether carrier 3 can be selected. As shown in the table below, carrier separation is not satisfied for one or more of the 4 TDMA frames (in this case not satisfied for the third TDMA frame), hence carrier 3 is not selected. Carrier selection for the current anchor stops. The selected group of carriers for anchor carrier 2 is {2}. Since the size of this group of carriers is not greater than the currently selected group of carriers (i.e. {1}), the latter is not changed.

TDMA frame index (i)

arfcn[i][2]

arfcn[i][3]

min arfcn

max arfcn

delta arfcn

delta arfcn <= max_sep?

1

10

19

10

19

9

Yes

2

1

10

1

10

9

Yes

3

46

1

1

46

45

No

4

10

19

1

10

9

Yes

Step 3: Set carrier 3 as the anchor, and test whether carrier 4 can be selected. As shown in the table below, carrier separation is satisfied for all 4 TDMA frames, hence carrier 4 is selected.

TDMA frame index (i)

arfcn[i][3]

arfcn[i][4]

min arfcn

max arfcn

delta arfcn

delta arfcn <= max_sep?

1

19

37

19

37

18

Yes

2

10

28

10

28

18

Yes

3

1

19

1

19

18

Yes

4

19

37

19

37

18

Yes

Step 4: Test whether carrier 5 can be selected. As shown in the table below, carrier separation is satisfied for all 4 TDMA frames, hence carrier 5 is selected. Since there are no more carriers to be processed, carrier selection for the current anchor stops. The selected group of carriers for anchor carrier 3 is {3, 4, 5}. Since the size of this group of carriers is greater than the currently selected group of carriers (i.e. {1}), the latter is changed to {3, 4, 5}.

TDMA frame index (i)

arfcn[i][3]

arfcn[i][4]

arfcn[i][5]

min arfcn

max arfcn

delta arfcn

delta arfcn <= max_sep?

1

19

37

23

19

37

18

Yes

2

10

28

23

10

28

18

Yes

3

1

19

23

1

23

22

Yes

4

19

37

23

19

37

18

Yes

Step 5: Since there are no more carriers to be processed, the carrier selection method stops. The finally selected group of carriers is {3, 4, 5}.

Non-contiguous reception:

Step 1: Perform the steps for contiguous reception with max_sep=2×22=44. The finally selected group of carriers in this step is {3, 4, 5}, i.e. not all carriers can be selected.

Step 2: Perform the steps for contiguous reception with max_sep=22. The finally selected group of carriers in this step is {3, 4, 5}.

Step 3: Perform the steps for contiguous reception with max_sep=22, num_carriers=5-3=2, and arfcn excluding vectors for carrier 3, carrier 4 and carrier 5. The finally selected group of carriers in this step is {1}.

Step 4: The carrier selection method stops. The finally selected group of carriers is {3, 4, 5}+{1}={3,4,5,1}.

Annex G (informative):
Change history

SPEC

SMG#

CR

PH

VERS

NEW_VERS

SUBJECT

05.02

s24

A020

R97

5.5.0A

6.0.0

Corrections and clarifications to GPRS

05.02

s24

A021

R97

5.5.0A

6.0.0

Multislot classes for GPRS

05.02

s24

A022

R97

5.5.0A

6.0.0

System information for GPRS on BCCH

05.02

s24

A023

R97

5.5.0A

6.0.0

Alignment of 51- and 52-multiframe PCCCH

05.02

s25

A025

R97

6.0.1

6.1.0

Corrections to the GPRS sleep mode

05.02

s25

A026

R97

6.0.1

6.1.0

Clarification of the definition of multislot classes

05.02

s25

A030

R97

6.0.1

6.1.0

14.4kbps Data Service

05.02

s25

A034

R97

6.0.1

6.1.0

Indication of PACCH logical channel type

05.02

s25

A035

R97

6.0.1

6.1.0

Renaming of GPRS RR states

05.02

s25

A036

R97

6.0.1

6.1.0

USF granularity for dynamic allocation

05.02

s26

A033

R97

6.1.0

6.2.0

GPRS SI message mapping

05.02

s26

A037

R97

6.1.0

6.2.0

Mapping of PACCH

05.02

s26

A039

R97

6.1.0

6.2.0

Mapping of SI 2 and SI 2ter on BCCH

05.02

s27

A041

R97

6.2.0

6.3.0

Clarification on PTCCH/U mapping

05.02

s27

A042

R97

6.2.0

6.3.0

Clarification on mapping PCCCH

05.02

s27

A043

R97

6.2.0

6.3.0

MS multislot classes and GPRS dynamic allocations

05.02

s28

A045

R97

6.3.0

6.4.0

Removal of System Information Type 14

05.02

s28

A052

R97

6.3.0

6.4.0

Schedule for packet System Information message on PBCCH

05.02

s28

A054

R97

6.3.0

6.4.0

Editorial correction to 05.02

05.02

s28

A055

R97

6.3.0

6.4.0

Improvements of PRS paging blocks scheduling

05.02

s28

A057

R97

6.3.0

6.4.0

51-multiframe PBCCH

05.02

s28

A060

R97

6.3.0

6.4.0

Clarification to the multislot configurations for GPRS

05.02

s28

A061

R97

6.3.0

6.4.0

Clarification to the PTCCH mapping

05.02

s28

A064

R97

6.3.0

6.4.0

Removal of inconsistency in Table 7

05.02

s28

A048

R98

6.4.0

7.0.0

Introduction of specific training sequences for CTS Synchr. bursts

05.02

s28

A049

R98

6.4.0

7.0.0

Introduction of CTS in 05.02

05.02

s28

A050

R98

6.4.0

7.0.0

CTS Frequency Hopping Algorithm

05.02

s29

A047

R98

7.0.0

7.1.0

Addition of SoLSA functionality

05.02

s29

A065

R98

7.0.0

7.1.0

Editorial modification to GSM 05.02

05.02

s29

A066

R98

7.0.0

7.1.0

Correction of TFH carrier list

05.02

s29

A067

R98

7.0.0

7.1.0

Training sequence code of normal bursts for CTS control channel

05.02

s29

A070

R98

7.0.0

7.1.0

Removal of SI15 references

05.02

s29

A071

R98

7.0.0

7.1.0

Deleting 51-multiframe PBCCH

05.02

s29

A072

R98

7.0.0

7.1.0

Modification of CTSARCH operation

05.02

s29

A077

R98

7.0.0

7.1.0

Correction to non-drx period and SPLIT_PG_CYCLE limitations

05.02

s29

A046

R99

7.1.0

8.0.0

Introduction of 8-PSK burst format

05.02

s29

A074

R99

7.1.0

8.0.1

05.02 changes for ECSD FACCH

05.02

s30

A080

R99

8.0.1

8.1.0

Introduction of AMR and EFR Traffic Channels

05.02

s30

A081

R99

8.0.1

8.1.0

Non-GSM Broadcast Information

05.02

s30

A082

R99

8.0.1

8.1.0

EDGE Compact Cell Reselection

05.02

s30

A083

R99

8.0.1

8.1.0

New training sequences for Access Burst due to EGPRS

05.02

s30

A084

R99

8.0.1

8.1.0

Introduction of Fast Power Control for ECSD in 05.02

05.02

s30

A085

R99

8.0.1

8.1.0

EDGE Compact logical channels

05.02

s30

A098

R99

8.0.1

8.1.0

Mapping of PAGCH

05.02

s30

A101

R99

8.0.1

8.1.0

Clarification pf DRX

05.02

s30

A103

R99

8.0.1

8.1.0

Correction when sending SI 16 and 17

05.02

s30b

A095

R99

8.1.0

8.2.0

MS multislot resource restriction in extended TA cells

05.02

s30b

A106

R99

8.1.0

8.2.0

Clarification of fixed allocated PRACH

05.02

s30b

A107

R99

8.1.0

8.2.0

COMPACT Logical Channels

05.02

s30b

A109

R99

8.1.0

8.2.0

Extended Training Sequence Code C-ETSC specific to COMPACT synchronization bursts only

05.02

s30b

A110

R99

8.1.0

8.2.0

Support of Slow Frequency Hopping for COMPACT

05.02

s30b

A111

R99

8.1.0

8.2.0

Synchronization of 52-multiframes in EGPRS COMPACT

05.02

s30b

A114

R99

8.1.0

8.2.0

Bi-directional channels in case of multi slot

05.02

s30b

A117

R99

8.1.0

8.2.0

Clarification of multislot configuration

05.02

s30b

A119

R99

8.1.0

8.2.0

Training Sequence to support LCS and specification of 8-PSK modulated normal bursts for compatibility with future releases, mirror CR to R’98

05.02

s30b

A120

R99

8.1.0

8.2.0

Compact FCCH

05.02

s31

A123

R99

8.2.0

8.3.0

PTCCH block numbering

05.02

s31

A126

R99

8.2.0

8.3.0

Correction of BS_PRACH_BLKS range

05.02

s31

A127

R99

8.2.0

8.3.0

COMPACT interference measurements

05.02

s31

A128

R99

8.2.0

8.3.0

Timegroup rotation and NIB Clarification

05.02

s31

A129

R99

8.2.0

8.3.0

Clarifications in 05.02

05.02

s31

A133

R99

8.2.0

8.3.0

USF Handling in COMPACT

05.02

s31

A138

R99

8.2.0

8.3.0

Correction to non-DRX mode

05.02

s31

A142

R99

8.2.0

8.3.0

GPRS & SMS-CB interworking

05.02

s31

A143

R99

8.2.0

8.3.0

Complete Frequency Hopping on COMPACT

05.02

s31b

A148

R99

8.3.0

8.4.0

New measurement order – Idle mode

05.02

s31b

A147

R99

8.3.0

8.4.0

Clarification of PBCCH message scheduling

05.02

s31b

A157

R99

8.3.0

8.4.0

FCCH decoding problem for multislot MS

05.02

s31b

A144

R99

8.3.0

8.4.0

Correction of Figure D.4

05.02

s31b

A149

R99

8.3.0

8.4.0

Correction of NIB parameters

05.02

s32

A158

R99

8.4.0

8.5.0

Clarification of COMPACT frequency hopping parameters

05.02

s32

A159

R99

8.4.0

8.5.0

Class A Dual Transfer Mode (DTM)

GERAN#

September 2000 – 3GPP GERAN

05.02

G01

A162

8.5.0

8.6.0

DTM (R99)

05.02

G01

A163

8.5.0

8.6.0

Corrections to COMPACT (R99)

05.02

G01

A165

8.5.0

8.6.0

Editorial corrections related to COMPACT (R99)

GERAN#

September 2000 – 3GPP GERAN#1

05.02

G01

A161

8.6.0

4.0.0

NCH clarification (Release 4)

4.0.0

4.0.1

Oct 2000: References corrected.

November 2000 – 3GPP GERAN#2

45.002

G02

002

1

4.0.1

4.1.0

Clarification of mapping of PDTCH and PCCCH

45.002

G02

003

4.0.1

4.1.0

Editorial corrections

45.002

G02

004

1

4.0.1

4.1.0

Possible multislot configurations for GPRS

4.1.0

4.1.1

Front page layout correction

January 2001 – 3GPP GERAN#3

45.002

G03

005

4.1.1

4.2.0

Possible multislot configurations for GPRS

45.002

G03

006

4.1.1

4.2.0

Clarification of the monitored GPRS control channels during GPRS attachment

Change history

Date

TSG 

GERAN#

TSG Doc.

CR

Rev

Subject/Comment

Old

New

2001-01

03

GP-010241

008

Introduction of Wideband AMR for GMSK modulated speech channel

4.2.0

5.0.0

GP-010241

007

Correction of CR numbers ( 007 -> 006 / 008->007)

5.0.0

5.0.1

2001-04

04

GP-010872

010

1

Dynamic ARFCN mapping

5.0.1

5.1.0

2001-04

04

GP-010653

012

System Information Type 2 quater scheduling

5.0.1

5.1.0

2001-08

06

GP-011918

020

1

Introduction of enhanced power control channels

5.1.0

5.2.0

2001-08

06

GP-011787

022

Editorial corrections in the hopping sequence generation descriptions

5.1.0

5.2.0

2001-08

06

GP-011608

028

Multislot configurations for 8-PSK

5.1.0

5.2.0

2001-11

07

GP-012746

025

1

Introduction of adaptive half rate speech channels with 8-PSK modulation

5.2.0

5.3.0

2001-11

07

GP-012762

029

1

High multislot classes for type 1 mobiles

5.2.0

5.3.0

2001-11

07

GP-012649

031

1

Training Sequence Code on PBCCH/PCCCH

5.2.0

5.3.0

2001-11

07

GP-012630

033

Correction of minimum number of paging blocks "available" on one PCCCH

5.2.0

5.3.0

2001-11

07

GP-012769

035

1

Correction of references to 3GPP specifications

5.2.0

5.3.0

2002-02

08

GP-020510

036

2

Clarification of permitted channel combinations

5.3.0

5.4.0

2002-02

08

GP-020454

040

1

Multiplexing PDTCH/U,PACCH/U and PCCCH/U

5.3.0

5.4.0

2002-02

08

GP-020478

041

1

Correction on multislot classes and Tra/Tta configurations

5.3.0

5.4.0

2002-04

09

GP-020646

043

Removal of Fixed Allocation

5.4.0

5.5.0

2002-04

09

GP-021205

047

2

Multislot configuration with EPC

5.4.0

5.5.0

2002-04

09

GP-021206

048

1

Introduction of AMR-WB on 8PSK modulated speech traffic channels

5.4.0

5.5.0

2002-04

09

GP-021015

050

Definition of octal traffic channels

5.4.0

5.5.0

2002-06

10

GP-021411

051

Editorial clean up of references

5.5.0

5.6.0

2002-06

10

GP-021668

053

Multislot configurations for OTCH/F

5.5.0

5.6.0

2002-06

10

GP-021669

054

Alignment and additions for Iu mode

5.5.0

5.6.0

2002-11

12

GP-023114

055

Inclusion of DBPSCH

5.6.0

5.7.0

2002-11

12

GP-023141

058

Mapping of SI13alt message on BCCH

5.6.0

5.7.0

2002-11

12

GP-023405

059

Correction for SBPSCH in Iu Mode DTM

5.6.0

5.7.0

2003-02

13

GP-030379

060

1

Inconsistent specification of Iu-mode multislot configurations

5.7.0

5.8.0

2003-02

13

GP-030221

062

Multislot configurations for dual transfer mode

5.7.0

5.8.0

2003-02

13

GP-030222

063

Multislot configurations for DBPSCH in Iu mode

5.7.0

5.8.0

2003-02

13

GP-030261

064

Fixed allocation removal correction

5.8.0

6.0.0

2003-04

14

GP-030975

069

1

Mapping of the PDTCH/D on PCCCH in case EGPRS

6.0.0

6.1.0

2003-04

14

GP-030896

072

Corrections for DTM multislot configurations

6.0.0

6.1.0

2003-06

15

GP-031642

078

1

Mapping of the PDTCH/D on PCCCH in case EGPRS

6.1.0

6.2.0

2003-06

15

GP-031713

081

2

Clarification of the Extended Dynamic Allocation

6.1.0

6.2.0

2003-08

16

GP-031906

077

1

Improvements to Extended Dynamic Allocation for high multislot classes

6.2.0

6.3.0

2003-11

17

GP-032463

084

Flexible Layer One

6.3.0

6.4.0

2004-02

18

GP-040179

085

Restrictions on the allowed PBCCH & PCCCH frequency band

6.4.0

6.5.0

2004-04

19

GP-040698

087

Corrections on allowed packet switched multislot configurations

6.5.0

6.6.0

2004-04

19

GP-040701

088

Clarification on USF monitoring in case of extended dynamic allocation

6.5.0

6.6.0

2004-04

19

GP-040725

089

Correction to Figure 9

6.5.0

6.6.0

2004-11

22

GP-042752

090

1

Removal of PTM-M

6.6.0

6.7.0

2004-11

22

GP-042783

091

1

Introduction of MBMS

6.6.0

6.7.0

2005-01

23

GP-050094

092

Correction to mapping of uplink packet channel

6.7.0

6.8.0

2005-01

23

GP-050482

095

1

High multislot class operation on a "d = 1, u = 4" allocation in a legacy network

6.7.0

6.8.0

2005-01

23

GP-050229

096

Provision of cell reselection parameters for neighbouring cells in the serving cell

6.7.0

6.8.0

2005-04

24

GP-051064

097

1

Extension of DTM to high multislot classes

6.8.0

6.9.0

2005-04

24

GP-050709

098

Clarification on non-contiguous assigned timeslots

6.8.0

6.9.0

2005-06

25

GP-051494

100

Corrections for reception of multiple MBMS sessions

6.9.0

6.10.0

2005-09

26

GP-052236

0102

1

Correction to multislot classes allowed for MBMS

6.10.0

6.11.0

2005-11

27

GP-052847

0103

1

MBMS transfer mode

6.11.0

6.12.0

2005-11

27

GP-052849

0106

Correction on the transmission of SI1

6.11.0

6.12.0

2006-04

29

GP-060921

0107

1

Correction of Title of Clause 7 and correspondings

6.12.0

7.0.0

2006-06

30

GP-061338

0108

1

Correction of terminology: ‘allocation’ vs. ‘assignment’

7.0.0

7.1.0

2006-11

32

GP-062442

0113

3

Introduction of Downlink Dual Carrier

7.1.0

7.2.0

2007-02

33

GP-070368

0112

3

Flexible timeslot assignment

7.2.0

7.3.0

2007-02

33

GP-070465

0116

1

Clarification of multislot capabilities for non-DCDL assignments

7.2.0

7.3.0

2007-05

34

GP-070790

0118

Editorial corrections

7.3.0

7.4.0

2007-08

35

GP-071515

0117

5

Introduction of RTTI

7.4.0

7.5.0

2007-08

35

GP-071256

0121

Introduction of RED HOT and HUGE

7.4.0

7.5.0

2007-08

35

GP-071271

0122

Clarification on timeslot configurations for dual carrier in the downlink

7.4.0

7.5.0

2007-11

36

GP-071674

0124

Miscellaneous corrections on Reduced Latency

7.5.0

7.6.0

2007-11

36

GP-071694

0125

Correction on System Information Type 1 scheduling rules

7.5.0

7.6.0

2007-11

36

GP-071956

0126

1

Tail-symbols for EGPRS2

7.5.0

7.6.0

2008-05

38

GP-080783

0127

1

Clarification on guard period

7.6.0

7.7.0

2008-05

38

GP-080874

0128

3

Corrections on Multislot configurations for packet switched connections in A/Gb mode

7.6.0

7.7.0

2008-05

38

GP-080662

0130

Reduced Latency terminology alignments

7.6.0

7.7.0

2008-12

40

Version for Release 8

7.7.0

8.0.0

2009-05

42

GP-091040

0138

1

Enhanced Flexible Timeslot Assignment

8.0.0

9.0.0

2009-09

43

GP-091686

0140

1

Introduction of VAMOS multiplexing and multiple access

9.0.0

9.1.0

2009-11

44

GP-092348

0142

1

Removal of mandatory support for P-channels by mobile stations in A/Gb mode

9.1.0

9.2.0

2010-03

45

GP-100600

0137

5

Introduction of Shifted SACCH mapping for VAMOS

9.2.0

9.3.0

2010-03

45

GP-100340

0143

Clarification of DTM Support for EFTA

9.2.0

9.3.0

2010-03

45

GP-100577

0144

1

Interpretation of Multislot Class Parameters for EFTA

9.2.0

9.3.0

2010-09

47

GP-101557

0146

1

Shifted USF for EFTA

9.3.0

9.4.0

2010-09

47

GP-101407

0147

DCDL for EFTA

9.3.0

9.4.0

2010-09

47

GP-101549

0148

1

TSC allocation for VAMOS in case of DTM

9.3.0

9.4.0

2011-03

49

GP-110465

0152

1

Clarification of Shifted USF operation in combination with Dual Carrier DL

9.4.0

9.5.0

2011-03

49

GP-110454

0153

1

Clarification of Shifted USF in combination with EFTA

9.4.0

9.5.0

2011-03

49

GP-110480

0154

1

Clarifications for support of 8 DL TS operation in EFTA assignment

9.4.0

9.5.0

2011-03

49

GP-110236

0149

1

Introduction of fast downlink frequency switching capability

9.5.0

10.0.0

2011-05

50

GP-110965

0155

3

Realizing Extended Access Barring

10.0.0

10.1.0

2011-09

51

GP-111190

0158

Applicability of reduced switching times for fast downlink frequency switching

10.1.0

10.2.0

2012-03

53

GP-120150

0162

2

Alternative EFTA multislot classes and multislot capabilities applicability for EFTA

10.2.0

10.3.0

2012-08

55

GP-121129

0159

5

Introduction of SI22 message for Network Sharing

10.3.0

11.0.0

2012-11

56

GP-121387

0163

1

Introduction of inter RAT mobility on PLMN basis for Network Sharing

11.0.0

11.1.0

2013-03

57

GP-130273

0166

2

Corrections to multislot capabilities for dual carrier mobile stations

11.1.0

11.2.0

2013-08

59

GP-130881

0172

2

Clarification of VAMOS II mapping of associated control channels

11.2.0

11.3.0

2013-08

59

GP-130738

0176

Measurements and BSIC decoding for EFTA multislot configurations

11.2.0

11.3.0

2013-08

59

GP-130863

0173

1

Introduction of VAMOS III MS

11.3.0

12.0.0

2013-11

60

GP-131052

0168

7

Introduction of Downlink Multi Carrier

12.0.0

12.1.0

2014-08

63

GP-140554

0178

Correction to pseudo code indentation

12.1.0

12.2.0

2014-11

64

GP-140946

0177

4

Introduction of extended TSC sets

12.2.0

12.3.0

2015-03

65

GP-150124

0181

Extended TSC sets correction

12.3.0

12.4.0

2015-11

68

GP-151217

0182

5

Introduction of Power Efficient Operation

12.4.0

13.0.0

2016-02

69

GP-160173

0183

3

Introduction of EC-EGPRS, Multislot capabilities

13.0.0

13.1.0

2016-02

69

GP-160160

0184

6

Introduction of EC-EGPRS, Logical channels

13.0.0

13.1.0

2016-02

69

GP-160197

0185

6

Introduction of EC-EGPRS, Physical channels

13.0.0

13.1.0

2016-02

69

GP-160172

0186

6

Introduction of EC-EGPRS, Mapping of logical channels onto physical channels

13.0.0

13.1.0

2016-02

69

GP-160057

0187

Miscellaneous corrections to eDRX

13.0.0

13.1.0

2016-02

69

GP-160194

0191

Corrections to Overlaid CDMA

13.0.0

13.1.0

Change history

Date

Meeting

TDoc

CR

Rev

Cat

Subject/Comment

New version

2016-05

70

GP-160472

0192

3

F

Clarifications and miscellaneous corrections to EC-GSM-IoT (including name change)

13.2.0

2016-05

70

GP-160296

0193

B

Introduction to Radio Frequency Colour Code (RCC)

13.2.0

2016-05

70

GP-160473

0194

2

F

Miscellaneous corrections to eDRX_GSM

13.2.0

2016-05

70

GP-160497

0195

4

C

Energy Efficient EC-CCCH/D Operation

13.2.0

2016-09

73

RP-161393

0198

1

F

Miscellaneous corrections for EC-GSM-IoT

13.3.0

2016-09

73

RP-1613932

0199

4

F

Corrections to EC-GSM-IoT

13.3.0

2016-09

73

RP-161393

0200

1

F

Clarification of PEO Code Point Usage

13.3.0

2016-09

Editorial corrections

13.3.1

2016-12

74

RP-162070

0201

1

F

Miscellaneous corrections

13.4.0

2016-12

74

RP-162070

0202

2

F

Miscellaneous corrections to EC-GSM-IoT

13.4.0

2016-12

74

RP-162066

0203

2

B

Introduction of Alternative Mappings for Higher Coverage Classes with 2 PDCHs

14.0.0

2017-03

75

RP-170061

0204

1

B

Introduction of compact burst mapping

14.1.0

2017-03

75

RP-170060

0205

2

B

Introduction of Extended Access Burst for connectionless Multilateration Positioning

14.1.0

2017-03

75

RP-170063

0208

A

Synchronization sequence bits correction

14.1.0

2017-06

76

RP-170924

0206

4

B

Introduction of uplink coverage class CC5 for UL MCL improvement

14.2.0

2017-09

77

RP-171595

0210

F

Remove brackets of TS8 for ESAB

14.3.0

2017-09

77

RP-171595

0211

3

F

Training Sequence Selection for CC5 EC-RACH using EDAB

14.3.0

2017-12

78

RP-172188

0212

F

Miscellaneous corrections related to CC5 EC-RACH

14.4.0

2018-03

79

RP-180071

0213

F

Miscellaneous corrections related to CC5 EC-RACH

14.5.0

2018-06

80

RP-180821

0214

3

B

Energy efficiency enhancements for EC-GSM-IoT MS in idle mode

15.0.0

2018-09

81

RP-181593

0215

F

Corrections for EC-PICH

15.1.0

2019-03

83

RP-190061

0216

F

Correction to 52-multiframe mapping description for EC-GSM-IoT

16.0.0

2020-03

87e

RP-200053

0222

A

Removal of brackets for extended training sequence of EC-GSM-IoT sync burst

16.1.0

2020-03

87e

RP-200054

0223

A

Removal of brackets for “tail bits 4” of EDAB

16.1.0

2022-03

RP-95e

Upgrade to Rel-17 version without technical change

17.0.0