6.3.3 Physical random-access channel

38.2113GPPNRPhysical channels and modulationRelease 17TS

6.3.3.1 Sequence generation

The set of random-access preambles shall be generated according to

from which the frequency-domain representation shall be generated according to

where , , , or depending on the PRACH preamble format as given by Tables 6.3.3.1-1 and 6.3.3.1-2.

There are 64 preambles defined in each time-frequency PRACH occasion, enumerated in increasing order of first increasing cyclic shift of a logical root sequence, and then in increasing order of the logical root sequence index, starting with the index obtained from the higher-layer parameter prach-RootSequenceIndex or rootSequenceIndex-BFR or by msgA-PRACH-RootSequenceIndex if configured and a type-2 random-access procedure is initiated as described in clause 8.1 of [5, TS 38.213]. Additional preamble sequences, in case 64 preambles cannot be generated from a single root Zadoff-Chu sequence, are obtained from the root sequences with the consecutive logical indexes until all the 64 sequences are found. The logical root sequence order is cyclic; the logical index 0 is consecutive to . The sequence number is obtained from the logical root sequence index according to Tables 6.3.3.1-3 to 6.3.3.1-4B.

The cyclic shift is given by

where is given by Tables 6.3.3.1-5 to 6.3.3.1-7, the higher-layer parameter msgA-RestrictedSetConfig, if provided, determines the type of restricted sets (unrestricted, restricted type A, restricted type B); otherwise, the higher-layer parameter restrictedSetConfig determines the type of restricted sets (unrestricted, restricted type A, restricted type B), and Tables 6.3.3.1-1 and 6.3.3.1-2 indicate the type of restricted sets supported for the different preamble formats.

The variable is given by

where is the smallest non-negative integer that fulfils . The parameters for restricted sets of cyclic shifts depend on .

For restricted set type A, the parameters are given by:

– for

– for

For restricted set type B, the parameters are given by:

– for

– for

– for

– for

– for

– for

For all other values of , there are no cyclic shifts in the restricted set.

Table 6.3.3.1-1: PRACH preamble formats for and kHz.

Format

Support for restricted sets

0

839

1.25 kHz

Type A, Type B

1

839

1.25 kHz

Type A, Type B

2

839

1.25 kHz

Type A, Type B

3

839

5 kHz

Type A, Type B

Table 6.3.3.1-2: Preamble formats for and kHz where .

Format

Support for restricted sets

A1

139

1151

571

A2

139

1151

571

A3

139

1151

571

B1

139

1151

571

B2

139

1151

571

B3

139

1151

571

B4

139

1151

571

C0

139

1151

571

C2

139

1151

571

Table 6.3.3.1-3: Mapping from logical index to sequence number for preamble formats with .

Sequence number in increasing order of

0 – 19

129

710

140

699

120

719

210

629

168

671

84

755

105

734

93

746

70

769

60

779

20 – 39

2

837

1

838

56

783

112

727

148

691

80

759

42

797

40

799

35

804

73

766

40 – 59

146

693

31

808

28

811

30

809

27

812

29

810

24

815

48

791

68

771

74

765

60 – 79

178

661

136

703

86

753

78

761

43

796

39

800

20

819

21

818

95

744

202

637

80 – 99

190

649

181

658

137

702

125

714

151

688

217

622

128

711

142

697

122

717

203

636

100 – 119

118

721

110

729

89

750

103

736

61

778

55

784

15

824

14

825

12

827

23

816

120 – 139

34

805

37

802

46

793

207

632

179

660

145

694

130

709

223

616

228

611

227

612

140 – 159

132

707

133

706

143

696

135

704

161

678

201

638

173

666

106

733

83

756

91

748

160 – 179

66

773

53

786

10

829

9

830

7

832

8

831

16

823

47

792

64

775

57

782

180 – 199

104

735

101

738

108

731

208

631

184

655

197

642

191

648

121

718

141

698

149

690

200 – 219

216

623

218

621

152

687

144

695

134

705

138

701

199

640

162

677

176

663

119

720

220 – 239

158

681

164

675

174

665

171

668

170

669

87

752

169

670

88

751

107

732

81

758

240 – 259

82

757

100

739

98

741

71

768

59

780

65

774

50

789

49

790

26

813

17

822

260 – 279

13

826

6

833

5

834

33

806

51

788

75

764

99

740

96

743

97

742

166

673

280 – 299

172

667

175

664

187

652

163

676

185

654

200

639

114

725

189

650

115

724

194

645

300 – 319

195

644

192

647

182

657

157

682

156

683

211

628

154

685

123

716

139

700

212

627

320 – 339

153

686

213

626

215

624

150

689

225

614

224

615

221

618

220

619

127

712

147

692

340 – 359

124

715

193

646

205

634

206

633

116

723

160

679

186

653

167

672

79

760

85

754

360 – 379

77

762

92

747

58

781

62

777

69

770

54

785

36

803

32

807

25

814

18

821

380 – 399

11

828

4

835

3

836

19

820

22

817

41

798

38

801

44

795

52

787

45

794

400 – 419

63

776

67

772

72

767

76

763

94

745

102

737

90

749

109

730

165

674

111

728

420 – 439

209

630

204

635

117

722

188

651

159

680

198

641

113

726

183

656

180

659

177

662

440 – 459

196

643

155

684

214

625

126

713

131

708

219

620

222

617

226

613

230

609

232

607

460 – 479

262

577

252

587

418

421

416

423

413

426

411

428

376

463

395

444

283

556

285

554

480 – 499

379

460

390

449

363

476

384

455

388

451

386

453

361

478

387

452

360

479

310

529

500 – 519

354

485

328

511

315

524

337

502

349

490

335

504

324

515

323

516

320

519

334

505

520 – 539

359

480

295

544

385

454

292

547

291

548

381

458

399

440

380

459

397

442

369

470

540 – 559

377

462

410

429

407

432

281

558

414

425

247

592

277

562

271

568

272

567

264

575

560 – 579

259

580

237

602

239

600

244

595

243

596

275

564

278

561

250

589

246

593

417

422

580 – 599

248

591

394

445

393

446

370

469

365

474

300

539

299

540

364

475

362

477

298

541

600 – 619

312

527

313

526

314

525

353

486

352

487

343

496

327

512

350

489

326

513

319

520

620 – 639

332

507

333

506

348

491

347

492

322

517

330

509

338

501

341

498

340

499

342

497

640 – 659

301

538

366

473

401

438

371

468

408

431

375

464

249

590

269

570

238

601

234

605

660 – 679

257

582

273

566

255

584

254

585

245

594

251

588

412

427

372

467

282

557

403

436

680 – 699

396

443

392

447

391

448

382

457

389

450

294

545

297

542

311

528

344

495

345

494

700 – 719

318

521

331

508

325

514

321

518

346

493

339

500

351

488

306

533

289

550

400

439

720 – 739

378

461

374

465

415

424

270

569

241

598

231

608

260

579

268

571

276

563

409

430

740 – 759

398

441

290

549

304

535

308

531

358

481

316

523

293

546

288

551

284

555

368

471

760 – 779

253

586

256

583

263

576

242

597

274

565

402

437

383

456

357

482

329

510

317

522

780 – 799

307

532

286

553

287

552

266

573

261

578

236

603

303

536

356

483

355

484

405

434

800 – 819

404

435

406

433

235

604

267

572

302

537

309

530

265

574

233

606

367

472

296

543

820 – 837

336

503

305

534

373

466

280

559

279

560

419

420

240

599

258

581

229

610

Table 6.3.3.1-4: Mapping from logical index to sequence number for preamble formats with .

Sequence number in increasing order of

0 – 19

1

138

2

137

3

136

4

135

5

134

6

133

7

132

8

131

9

130

10

129

20 – 39

11

128

12

127

13

126

14

125

15

124

16

123

17

122

18

121

19

120

20

119

40 – 59

21

118

22

117

23

116

24

115

25

114

26

113

27

112

28

111

29

110

30

109

60 – 79

31

108

32

107

33

106

34

105

35

104

36

103

37

102

38

101

39

100

40

99

80 – 99

41

98

42

97

43

96

44

95

45

94

46

93

47

92

48

91

49

90

50

89

100 – 119

51

88

52

87

53

86

54

85

55

84

56

83

57

82

58

81

59

80

60

79

120 – 137

61

78

62

77

63

76

64

75

65

74

66

73

67

72

68

71

69

70

138 – 837

N/A

Table 6.3.3.1-4A: Mapping from logical index to sequence number for preamble formats with .

Sequence number in increasing order of

0-19

1

1150

2

1149

3

1148

4

1147

5

1146

6

1145

7

1144

8

1143

9

1142

10

1141

20-39

11

1140

12

1139

13

1138

14

1137

15

1136

16

1135

17

1134

18

1133

19

1132

20

1131

40-59

21

1130

22

1129

23

1128

24

1127

25

1126

26

1125

27

1124

28

1123

29

1122

30

1121

60-79

31

1120

32

1119

33

1118

34

1117

35

1116

36

1115

37

1114

38

1113

39

1112

40

1111

80-99

41

1110

42

1109

43

1108

44

1107

45

1106

46

1105

47

1104

48

1103

49

1102

50

1101

100-119

51

1100

52

1099

53

1098

54

1097

55

1096

56

1095

57

1094

58

1093

59

1092

60

1091

120-139

61

1090

62

1089

63

1088

64

1087

65

1086

66

1085

67

1084

68

1083

69

1082

70

1081

140-159

71

1080

72

1079

73

1078

74

1077

75

1076

76

1075

77

1074

78

1073

79

1072

80

1071

160-179

81

1070

82

1069

83

1068

84

1067

85

1066

86

1065

87

1064

88

1063

89

1062

90

1061

180-199

91

1060

92

1059

93

1058

94

1057

95

1056

96

1055

97

1054

98

1053

99

1052

100

1051

200-219

101

1050

102

1049

103

1048

104

1047

105

1046

106

1045

107

1044

108

1043

109

1042

110

1041

220-239

111

1040

112

1039

113

1038

114

1037

115

1036

116

1035

117

1034

118

1033

119

1032

120

1031

240-259

121

1030

122

1029

123

1028

124

1027

125

1026

126

1025

127

1024

128

1023

129

1022

130

1021

260-279

131

1020

132

1019

133

1018

134

1017

135

1016

136

1015

137

1014

138

1013

139

1012

140

1011

280-299

141

1010

142

1009

143

1008

144

1007

145

1006

146

1005

147

1004

148

1003

149

1002

150

1001

300-319

151

1000

152

999

153

998

154

997

155

996

156

995

157

994

158

993

159

992

160

991

320-339

161

990

162

989

163

988

164

987

165

986

166

985

167

984

168

983

169

982

170

981

340-359

171

980

172

979

173

978

174

977

175

976

176

975

177

974

178

973

179

972

180

971

360-379

181

970

182

969

183

968

184

967

185

966

186

965

187

964

188

963

189

962

190

961

380-399

191

960

192

959

193

958

194

957

195

956

196

955

197

954

198

953

199

952

200

951

400-419

201

950

202

949

203

948

204

947

205

946

206

945

207

944

208

943

209

942

210

941

420-439

211

940

212

939

213

938

214

937

215

936

216

935

217

934

218

933

219

932

220

931

440-459

221

930

222

929

223

928

224

927

225

926

226

925

227

924

228

923

229

922

230

921

460-479

231

920

232

919

233

918

234

917

235

916

236

915

237

914

238

913

239

912

240

911

480-499

241

910

242

909

243

908

244

907

245

906

246

905

247

904

248

903

249

902

250

901

500-519

251

900

252

899

253

898

254

897

255

896

256

895

257

894

258

893

259

892

260

891

520-539

261

890

262

889

263

888

264

887

265

886

266

885

267

884

268

883

269

882

270

881

540-559

271

880

272

879

273

878

274

877

275

876

276

875

277

874

278

873

279

872

280

871

560-579

281

870

282

869

283

868

284

867

285

866

286

865

287

864

288

863

289

862

290

861

580-599

291

860

292

859

293

858

294

857

295

856

296

855

297

854

298

853

299

852

300

851

600-619

301

850

302

849

303

848

304

847

305

846

306

845

307

844

308

843

309

842

310

841

620-639

311

840

312

839

313

838

314

837

315

836

316

835

317

834

318

833

319

832

320

831

640-659

321

830

322

829

323

828

324

827

325

826

326

825

327

824

328

823

329

822

330

821

660-679

331

820

332

819

333

818

334

817

335

816

336

815

337

814

338

813

339

812

340

811

680-699

341

810

342

809

343

808

344

807

345

806

346

805

347

804

348

803

349

802

350

801

700-719

351

800

352

799

353

798

354

797

355

796

356

795

357

794

358

793

359

792

360

791

720-739

361

790

362

789

363

788

364

787

365

786

366

785

367

784

368

783

369

782

370

781

740-759

371

780

372

779

373

778

374

777

375

776

376

775

377

774

378

773

379

772

380

771

760-779

381

770

382

769

383

768

384

767

385

766

386

765

387

764

388

763

389

762

390

761

780-799

391

760

392

759

393

758

394

757

395

756

396

755

397

754

398

753

399

752

400

751

800-819

401

750

402

749

403

748

404

747

405

746

406

745

407

744

408

743

409

742

410

741

820-839

411

740

412

739

413

738

414

737

415

736

416

735

417

734

418

733

419

732

420

731

840-859

421

730

422

729

423

728

424

727

425

726

426

725

427

724

428

723

429

722

430

721

860-879

431

720

432

719

433

718

434

717

435

716

436

715

437

714

438

713

439

712

440

711

880-899

441

710

442

709

443

708

444

707

445

706

446

705

447

704

448

703

449

702

450

701

900-919

451

700

452

699

453

698

454

697

455

696

456

695

457

694

458

693

459

692

460

691

920-939

461

690

462

689

463

688

464

687

465

686

466

685

467

684

468

683

469

682

470

681

940-959

471

680

472

679

473

678

474

677

475

676

476

675

477

674

478

673

479

672

480

671

960-979

481

670

482

669

483

668

484

667

485

666

486

665

487

664

488

663

489

662

490

661

980-999

491

660

492

659

493

658

494

657

495

656

496

655

497

654

498

653

499

652

500

651

1000-1019

501

650

502

649

503

648

504

647

505

646

506

645

507

644

508

643

509

642

510

641

1020-1039

511

640

512

639

513

638

514

637

515

636

516

635

517

634

518

633

519

632

520

631

1040-1059

521

630

522

629

523

628

524

627

525

626

526

625

527

624

528

623

529

622

530

621

1060-1079

531

620

532

619

533

618

534

617

535

616

536

615

537

614

538

613

539

612

540

611

1080-1099

541

610

542

609

543

608

544

607

545

606

546

605

547

604

548

603

549

602

550

601

1100-1119

551

600

552

599

553

598

554

597

555

596

556

595

557

594

558

593

559

592

560

591

1120-1139

561

590

562

589

563

588

564

587

565

586

566

585

567

584

568

583

569

582

570

581

1140-1149

571

580

572

579

573

578

574

577

575

576

Table 6.3.3.1-4B: Mapping from logical index to sequence number for preamble formats with .

Sequence number in increasing order of

0-19

1

570

2

569

3

568

4

567

5

566

6

565

7

564

8

563

9

562

10

561

20-39

11

560

12

559

13

558

14

557

15

556

16

555

17

554

18

553

19

552

20

551

40-59

21

550

22

549

23

548

24

547

25

546

26

545

27

544

28

543

29

542

30

541

60-79

31

540

32

539

33

538

34

537

35

536

36

535

37

534

38

533

39

532

40

531

80-99

41

530

42

529

43

528

44

527

45

526

46

525

47

524

48

523

49

522

50

521

100-119

51

520

52

519

53

518

54

517

55

516

56

515

57

514

58

513

59

512

60

511

120-139

61

510

62

509

63

508

64

507

65

506

66

505

67

504

68

503

69

502

70

501

140-159

71

500

72

499

73

498

74

497

75

496

76

495

77

494

78

493

79

492

80

491

160-179

81

490

82

489

83

488

84

487

85

486

86

485

87

484

88

483

89

482

90

481

180-199

91

480

92

479

93

478

94

477

95

476

96

475

97

474

98

473

99

472

100

471

200-219

101

470

102

469

103

468

104

467

105

466

106

465

107

464

108

463

109

462

110

461

220-239

111

460

112

459

113

458

114

457

115

456

116

455

117

454

118

453

119

452

120

451

240-259

121

450

122

449

123

448

124

447

125

446

126

445

127

444

128

443

129

442

130

441

260-279

131

440

132

439

133

438

134

437

135

436

136

435

137

434

138

433

139

432

140

431

280-299

141

430

142

429

143

428

144

427

145

426

146

425

147

424

148

423

149

422

150

421

300-319

151

420

152

419

153

418

154

417

155

416

156

415

157

414

158

413

159

412

160

411

320-339

161

410

162

409

163

408

164

407

165

406

166

405

167

404

168

403

169

402

170

401

340-359

171

400

172

399

173

398

174

397

175

396

176

395

177

394

178

393

179

392

180

391

360-379

181

390

182

389

183

388

184

387

185

386

186

385

187

384

188

383

189

382

190

381

380-399

191

380

192

379

193

378

194

377

195

376

196

375

197

374

198

373

199

372

200

371

400-419

201

370

202

369

203

368

204

367

205

366

206

365

207

364

208

363

209

362

210

361

420-439

211

360

212

359

213

358

214

357

215

356

216

355

217

354

218

353

219

352

220

351

440-459

221

350

222

349

223

348

224

347

225

346

226

345

227

344

228

343

229

342

230

341

460-479

231

340

232

339

233

338

234

337

235

336

236

335

237

334

238

333

239

332

240

331

480-499

241

330

242

329

243

328

244

327

245

326

246

325

247

324

248

323

249

322

250

321

500-519

251

320

252

319

253

318

254

317

255

316

256

315

257

314

258

313

259

312

260

311

520-539

261

310

262

309

263

308

264

307

265

306

266

305

267

304

268

303

269

302

270

301

540-559

271

300

272

299

273

298

274

297

275

296

276

295

277

294

278

293

279

292

280

291

560-569

281

290

282

289

283

288

284

287

285

286

Table 6.3.3.1-5: for preamble formats with kHz.

zeroCorrelationZoneConfig,
msgA-ZeroCorrelationZoneConfig

value

Unrestricted set

Restricted set type A

Restricted set type B

0

0

15

15

1

13

18

18

2

15

22

22

3

18

26

26

4

22

32

32

5

26

38

38

6

32

46

46

7

38

55

55

8

46

68

68

9

59

82

82

10

76

100

100

11

93

128

118

12

119

158

137

13

167

202

14

279

237

15

419

Table 6.3.3.1-6: for preamble formats with kHz.

zeroCorrelationZoneConfig,
msgA-ZeroCorrelationZoneConfig

value

Unrestricted set

Restricted set type A

Restricted set type B

0

0

36

36

1

13

57

57

2

26

72

60

3

33

81

63

4

38

89

65

5

41

94

68

6

49

103

71

7

55

112

77

8

64

121

81

9

76

132

85

10

93

137

97

11

119

152

109

12

139

173

122

13

209

195

137

14

279

216

15

419

237

Table 6.3.3.1-7: for preamble formats with .

zeroCorrelationZoneConfig,
msgA-ZeroCorrelationZoneConfig

value

0

0

0

0

1

2

8

17

2

4

10

21

3

6

12

25

4

8

15

30

5

10

17

35

6

12

21

44

7

13

25

52

8

15

31

63

9

17

40

82

10

19

51

104

11

23

63

127

12

27

81

164

13

34

114

230

14

46

190

383

15

69

285

575

6.3.3.2 Mapping to physical resources

The preamble sequence shall be mapped to physical resources according to

where is an amplitude scaling factor in order to conform to the transmit power specified in [5, TS38.213], and is the antenna port. Baseband signal generation shall be done according to clause 5.3 using the parameters in Table 6.3.3.1-1 or Table 6.3.3.1-2 with given by Table 6.3.3.2-1.

Random access preambles can only be transmitted in the time resources obtained from Tables 6.3.3.2-2 to 6.3.3.2-4 and depends on FR1 or FR2 and the spectrum type as defined in [8, TS38.104]. The PRACH configuration index in Tables 6.3.3.2-2 to 6.3.3.2-4 is

– for Table 6.3.3.2-3 given by the higher-layer parameter prach-ConfigurationIndex, or by msgA-PRACH-ConfigurationIndex if configured; and

– for Tables 6.3.3.2-2 and 6.3.3.2-4 given by the higher-layer parameter prach-ConfigurationIndex, or by msgA-PRACH-ConfigurationIndex if configured.

For the IAB-MT part of an IAB-node, the following applies:

– if the higher-layer parameter prach-ConfigurationPeriodScaling-IAB is configured, the variable used in of Tables 6.3.3.2-2 to 6.3.3.2-4 shall be replaced by , where and is given by the higher-layer parameter prach-ConfigurationPeriodScaling-IAB and the IAB-node does not expect to be larger than 64;

– if the higher-layer parameter prach-ConfigurationFrameOffset-IAB is configured, the variable used in of Tables 6.3.3.2-2 to 6.3.3.2-4 shall be replaced by where is given by the higher-layer parameter prach-ConfigurationFrameOffset-IAB, and ;

– if the higher-layer parameter prach-ConfigurationSOffset-IAB is configured, the subframe number from Tables 6.3.3.2-2 to 6.3.3.2-3 and the slot number from Table 6.3.3.2-4 shall be replaced by where is given by the higher-layer parameter prach-ConfigurationSOffset-IAB, and is the number of subframes in a frame when using Tables 6.3.3.2-2 to 6.3.3.2-3 and the number of slots in a frame for 60 kHz subcarrier spacing when using in Table 6.3.3.2-4.

Random access preambles can only be transmitted in the frequency resources given by either the higher-layer parameter msg1-FrequencyStart or msgA-RO-FrequencyStart if configured as described in clause 8.1 of [5 TS 38.213]. The PRACH frequency resources , where equals the higher-layer parameter msg1-FDM or msgA-RO-FDM if configured, are numbered in increasing order within the initial uplink bandwidth part during initial access, starting from the lowest frequency. Otherwise, are numbered in increasing order within the active uplink bandwidth part, starting from the lowest frequency.

For operation with shared spectrum channel access, for , a UE expects to be provided with higher-layer parameter msg1-FrequencyStart or msgA-RO-FrequencyStart if configured, and higher-layer parameter msg1-FDM or msgA-RO-FDM if configured, such that a random-access preamble is confined within a single RB set. The UE assumes that the RB set is defined as when the UE is not provided intraCellGuardBandsPerSCS for an UL carrier as described in Clause 7 of [6, TS 38.214].

For operation with shared spectrum channel access, for or and Type-2 random access, a UE expects to be provided with higher-layer parameter msgA-RO-FDM equals to one.

For the purpose of slot numbering in the tables, the following subcarrier spacing shall be assumed:

– 15 kHz for FR1

– 60 kHz for FR2.

For handover purposes to a target cell in paired or unpaired spectrum where the target cell uses , the UE may assume the absolute value of the time difference between radio frame in the current cell and radio frame in the target cell is less than if the association pattern period in clause 8.1 of [5, TS 38.213] is not equal to 10 ms.

For inter frequency handover purposes where the source cell is either in paired or unpaired spectrum and the target cell is in unpaired spectrum and uses , the UE may assume the absolute value of the time difference between radio frame in the current cell and radio frame in the target cell is less than

Table 6.3.3.2-1: Supported combinations of and , and the corresponding value of .

for PRACH

for PUSCH

, allocation expressed in number of RBs for PUSCH

839

1.25

15

6

7

839

1.25

30

3

1

839

1.25

60

2

133

839

5

15

24

12

839

5

30

12

10

839

5

60

6

7

139

15

15

12

2

139

15

30

6

2

139

15

60

3

2

139

30

15

24

2

139

30

30

12

2

139

30

60

6

2

139

60

60

12

2

139

60

120

6

2

139

120

60

24

2

139

120

120

12

2

139

120

480

3

1

139

120

960

2

23

139

480

120

48

2

139

480

480

12

2

139

480

960

6

2

139

960

120

96

2

139

960

480

24

2

139

960

960

12

2

571

30

15

96

2

571

30

30

48

2

571

30

60

24

2

571

120

120

48

2

571

120

480

12

1

571

120

960

7

47

571

480

120

192

2

571

480

480

48

2

571

480

960

24

2

1151

15

15

96

1

1151

15

30

48

1

1151

15

60

24

1

1151

120

120

97

6

1151

120

480

25

23

1151

120

960

13

45

Table 6.3.3.2-2: Random access configurations for FR1 and paired spectrum/supplementary uplink.

PRACH
Configuration
Index

Preamble format

Subframe number

Starting symbol

Number of PRACH slots within a subframe

, number of time-domain PRACH occasions within a PRACH slot

,
PRACH duration

0

0

16

1

1

0

0

1

0

16

1

4

0

0

2

0

16

1

7

0

0

3

0

16

1

9

0

0

4

0

8

1

1

0

0

5

0

8

1

4

0

0

6

0

8

1

7

0

0

7

0

8

1

9

0

0

8

0

4

1

1

0

0

9

0

4

1

4

0

0

10

0

4

1

7

0

0

11

0

4

1

9

0

0

12

0

2

1

1

0

0

13

0

2

1

4

0

0

14

0

2

1

7

0

0

15

0

2

1

9

0

0

16

0

1

0

1

0

0

17

0

1

0

4

0

0

18

0

1

0

7

0

0

19

0

1

0

1,6

0

0

20

0

1

0

2,7

0

0

21

0

1

0

3,8

0

0

22

0

1

0

1,4,7

0

0

23

0

1

0

2,5,8

0

0

24

0

1

0

3, 6, 9

0

0

25

0

1

0

0,2,4,6,8

0

0

26

0

1

0

1,3,5,7,9

0

0

27

0

1

0

0,1,2,3,4,5,6,7,8,9

0

0

28

1

16

1

1

0

0

29

1

16

1

4

0

0

30

1

16

1

7

0

0

31

1

16

1

9

0

0

32

1

8

1

1

0

0

33

1

8

1

4

0

0

34

1

8

1

7

0

0

35

1

8

1

9

0

0

36

1

4

1

1

0

0

37

1

4

1

4

0

0

38

1

4

1

7

0

0

39

1

4

1

9

0

0

40

1

2

1

1

0

0

41

1

2

1

4

0

0

42

1

2

1

7

0

0

43

1

2

1

9

0

0

44

1

1

0

1

0

0

45

1

1

0

4

0

0

46

1

1

0

7

0

0

47

1

1

0

1,6

0

0

48

1

1

0

2,7

0

0

49

1

1

0

3,8

0

0

50

1

1

0

1,4,7

0

0

51

1

1

0

2,5,8

0

0

52

1

1

0

3,6,9

0

0

53

2

16

1

1

0

0

54

2

8

1

1

0

0

55

2

4

0

1

0

0

56

2

2

0

1

0

0

57

2

2

0

5

0

0

58

2

1

0

1

0

0

59

2

1

0

5

0

0

60

3

16

1

1

0

0

61

3

16

1

4

0

0

62

3

16

1

7

0

0

63

3

16

1

9

0

0

64

3

8

1

1

0

0

65

3

8

1

4

0

0

66

3

8

1

7

0

0

67

3

4

1

1

0

0

68

3

4

1

4

0

0

69

3

4

1

7

0

0

70

3

4

1

9

0

0

71

3

2

1

1

0

0

72

3

2

1

4

0

0

73

3

2

1

7

0

0

74

3

2

1

9

0

0

75

3

1

0

1

0

0

76

3

1

0

4

0

0

77

3

1

0

7

0

0

78

3

1

0

1,6

0

0

79

3

1

0

2,7

0

0

80

3

1

0

3,8

0

0

81

3

1

0

1,4,7

0

0

82

3

1

0

2,5,8

0

0

83

3

1

0

3, 6, 9

0

0

84

3

1

0

0,2,4,6,8

0

0

85

3

1

0

1,3,5,7,9

0

0

86

3

1

0

0,1,2,3,4,5,6,7,8,9

0

0

87

A1

16

0

4,9

0

1

6

2

88

A1

16

1

4

0

2

6

2

89

A1

8

0

4,9

0

1

6

2

90

A1

8

1

4

0

2

6

2

91

A1

4

0

4,9

0

1

6

2

92

A1

4

1

4,9

0

1

6

2

93

A1

4

0

4

0

2

6

2

94

A1

2

0

4,9

0

1

6

2

95

A1

2

0

1

0

2

6

2

96

A1

2

0

4

0

2

6

2

97

A1

2

0

7

0

2

6

2

98

A1

1

0

4

0

1

6

2

99

A1

1

0

1,6

0

1

6

2

100

A1

1

0

4,9

0

1

6

2

101

A1

1

0

1

0

2

6

2

102

A1

1

0

7

0

2

6

2

103

A1

1

0

2,7

0

2

6

2

104

A1

1

0

1,4,7

0

2

6

2

105

A1

1

0

0,2,4,6,8

0

2

6

2

106

A1

1

0

0,1,2,3,4,5,6,7,8,9

0

2

6

2

107

A1

1

0

1,3,5,7,9

0

2

6

2

108

A1/B1

2

0

4,9

0

1

7

2

109

A1/B1

2

0

4

0

2

7

2

110

A1/B1

1

0

4

0

1

7

2

111

A1/B1

1

0

1,6

0

1

7

2

112

A1/B1

1

0

4,9

0

1

7

2

113

A1/B1

1

0

1

0

2

7

2

114

A1/B1

1

0

7

0

2

7

2

115

A1/B1

1

0

1,4,7

0

2

7

2

116

A1/B1

1

0

0,2,4,6,8

0

2

7

2

117

A2

16

1

2,6,9

0

1

3

4

118

A2

16

1

4

0

2

3

4

119

A2

8

1

2,6,9

0

1

3

4

120

A2

8

1

4

0

2

3

4

121

A2

4

0

2,6,9

0

1

3

4

122

A2

4

0

4

0

2

3

4

123

A2

2

1

2,6,9

0

1

3

4

124

A2

2

0

1

0

2

3

4

125

A2

2

0

4

0

2

3

4

126

A2

2

0

7

0

2

3

4

127

A2

1

0

4

0

1

3

4

128

A2

1

0

1,6

0

1

3

4

129

A2

1

0

4,9

0

1

3

4

130

A2

1

0

1

0

2

3

4

131

A2

1

0

7

0

2

3

4

132

A2

1

0

2,7

0

2

3

4

133

A2

1

0

1,4,7

0

2

3

4

134

A2

1

0

0,2,4,6,8

0

2

3

4

135

A2

1

0

0,1,2,3,4,5,6,7,8,9

0

2

3

4

136

A2

1

0

1,3,5,7,9

0

2

3

4

137

A2/B2

2

1

2,6,9

0

1

3

4

138

A2/B2

2

0

4

0

2

3

4

139

A2/B2

1

0

4

0

1

3

4

140

A2/B2

1

0

1,6

0

1

3

4

141

A2/B2

1

0

4,9

0

1

3

4

142

A2/B2

1

0

1

0

2

3

4

143

A2/B2

1

0

7

0

2

3

4

144

A2/B2

1

0

1,4,7

0

2

3

4

145

A2/B2

1

0

0,2,4,6,8

0

2

3

4

146

A2/B2

1

0

0,1,2,3,4,5,6,7,8,9

0

2

3

4

147

A3

16

1

4,9

0

1

2

6

148

A3

16

1

4

0

2

2

6

149

A3

8

1

4,9

0

1

2

6

150

A3

8

1

4

0

2

2

6

151

A3

4

0

4,9

0

1

2

6

152

A3

4

0

4

0

2

2

6

153

A3

2

1

2,6,9

0

2

2

6

154

A3

2

0

1

0

2

2

6

155

A3

2

0

4

0

2

2

6

156

A3

2

0

7

0

2

2

6

157

A3

1

0

4

0

1

2

6

158

A3

1

0

1,6

0

1

2

6

159

A3

1

0

4,9

0

1

2

6

160

A3

1

0

1

0

2

2

6

161

A3

1

0

7

0

2

2

6

162

A3

1

0

2,7

0

2

2

6

163

A3

1

0

1,4,7

0

2

2

6

164

A3

1

0

0,2,4,6,8

0

2

2

6

165

A3

1

0

0,1,2,3,4,5,6,7,8,9

0

2

2

6

166

A3

1

0

1,3,5,7,9

0

2

2

6

167

A3/B3

2

1

2,6,9

0

2

2

6

168

A3/B3

2

0

4

0

2

2

6

169

A3/B3

1

0

4

0

1

2

6

170

A3/B3

1

0

1,6

0

1

2

6

171

A3/B3

1

0

4,9

0

1

2

6

172

A3/B3

1

0

1

0

2

2

6

173

A3/B3

1

0

7

0

2

2

6

174

A3/B3

1

0

1,4,7

0

2

2

6

175

A3/B3

1

0

0,2,4,6,8

0

2

2

6

176

A3/B3

1

0

0,1,2,3,4,5,6,7,8,9

0

2

2

6

177

B1

16

0

4,9

0

1

7

2

178

B1

16

1

4

0

2

7

2

179

B1

8

0

4,9

0

1

7

2

180

B1

8

1

4

0

2

7

2

181

B1

4

0

4,9

0

1

7

2

182

B1

4

1

4,9

0

1

7

2

183

B1

4

0

4

0

2

7

2

184

B1

2

0

4,9

0

1

7

2

185

B1

2

0

1

0

2

7

2

186

B1

2

0

4

0

2

7

2

187

B1

2

0

7

0

2

7

2

188

B1

1

0

4

0

1

7

2

189

B1

1

0

1,6

0

1

7

2

190

B1

1

0

4,9

0

1

7

2

191

B1

1

0

1

0

2

7

2

192

B1

1

0

7

0

2

7

2

193

B1

1

0

2,7

0

2

7

2

194

B1

1

0

1,4,7

0

2

7

2

195

B1

1

0

0,2,4,6,8

0

2

7

2

196

B1

1

0

0,1,2,3,4,5,6,7,8,9

0

2

7

2

197

B1

1

0

1,3,5,7,9

0

2

7

2

198

B4

16

0

4,9

0

2

1

12

199

B4

16

1

4

0

2

1

12

200

B4

8

0

4,9

0

2

1

12

201

B4

8

1

4

0

2

1

12

202

B4

4

0

4,9

0

2

1

12

203

B4

4

0

4

0

2

1

12

204

B4

4

1

4,9

0

2

1

12

205

B4

2

0

4,9

0

2

1

12

206

B4

2

0

1

0

2

1

12

207

B4

2

0

4

0

2

1

12

208

B4

2

0

7

0

2

1

12

209

B4

1

0

1

0

2

1

12

210

B4

1

0

4

0

2

1

12

211

B4

1

0

7

0

2

1

12

212

B4

1

0

1,6

0

2

1

12

213

B4

1

0

2,7

0

2

1

12

214

B4

1

0

4,9

0

2

1

12

215

B4

1

0

1,4,7

0

2

1

12

216

B4

1

0

0,2,4,6,8

0

2

1

12

217

B4

1

0

0,1,2,3,4,5,6,7,8,9

0

2

1

12

218

B4

1

0

1,3,5,7,9

0

2

1

12

219

C0

8

1

4

0

2

7

2

220

C0

4

1

4,9

0

1

7

2

221

C0

4

0

4

0

2

7

2

222

C0

2

0

4,9

0

1

7

2

223

C0

2

0

1

0

2

7

2

224

C0

2

0

4

0

2

7

2

225

C0

2

0

7

0

2

7

2

226

C0

1

0

4

0

1

7

2

227

C0

1

0

1,6

0

1

7

2

228

C0

1

0

4,9

0

1

7

2

229

C0

1

0

1

0

2

7

2

230

C0

1

0

7

0

2

7

2

231

C0

1

0

2,7

0

2

7

2

232

C0

1

0

1,4,7

0

2

7

2

233

C0

1

0

0,2,4,6,8

0

2

7

2

234

C0

1

0

0,1,2,3,4,5,6,7,8,9

0

2

7

2

235

C0

1

0

1,3,5,7,9

0

2

7

2

236

C2

16

1

4,9

0

1

2

6

237

C2

16

1

4

0

2

2

6

238

C2

8

1

4,9

0

1

2

6

239

C2

8

1

4

0

2

2

6

240

C2

4

0

4,9

0

1

2

6

241

C2

4

0

4

0

2

2

6

242

C2

2

1

2,6,9

0

2

2

6

243

C2

2

0

1

0

2

2

6

244

C2

2

0

4

0

2

2

6

245

C2

2

0

7

0

2

2

6

246

C2

1

0

4

0

1

2

6

247

C2

1

0

1,6

0

1

2

6

248

C2

1

0

4,9

0

1

2

6

249

C2

1

0

1

0

2

2

6

250

C2

1

0

7

0

2

2

6

251

C2

1

0

2,7

0

2

2

6

252

C2

1

0

1,4,7

0

2

2

6

253

C2

1

0

0,2,4,6,8

0

2

2

6

254

C2

1

0

0,1,2,3,4,5,6,7,8,9

0

2

2

6

255

C2

1

0

1,3,5,7,9

0

2

2

6

Table 6.3.3.2-3: Random access configurations for FR1 and unpaired spectrum.

PRACH
Configuration
Index

Preamble format

Subframe number

Starting symbol

Number of PRACH slots within a subframe

,
number of time-domain PRACH occasions within a PRACH slot

,
PRACH duration

0

0

16

1

9

0

0

1

0

8

1

9

0

0

2

0

4

1

9

0

0

3

0

2

0

9

0

0

4

0

2

1

9

0

0

5

0

2

0

4

0

0

6

0

2

1

4

0

0

7

0

1

0

9

0

0

8

0

1

0

8

0

0

9

0

1

0

7

0

0

10

0

1

0

6

0

0

11

0

1

0

5

0

0

12

0

1

0

4

0

0

13

0

1

0

3

0

0

14

0

1

0

2

0

0

15

0

1

0

1,6

0

0

16

0

1

0

1,6

7

0

17

0

1

0

4,9

0

0

18

0

1

0

3,8

0

0

19

0

1

0

2,7

0

0

20

0

1

0

8,9

0

0

21

0

1

0

4,8,9

0

0

22

0

1

0

3,4,9

0

0

23

0

1

0

7,8,9

0

0

24

0

1

0

3,4,8,9

0

0

25

0

1

0

6,7,8,9

0

0

26

0

1

0

1,4,6,9

0

0

27

0

1

0

1,3,5,7,9

0

0

28

1

16

1

7

0

0

29

1

8

1

7

0

0

30

1

4

1

7

0

0

31

1

2

0

7

0

0

32

1

2

1

7

0

0

33

1

1

0

7

0

0

34

2

16

1

6

0

0

35

2

8

1

6

0

0

36

2

4

1

6

0

0

37

2

2

0

6

7

0

38

2

2

1

6

7

0

39

2

1

0

6

7

0

40

3

16

1

9

0

0

41

3

8

1

9

0

0

42

3

4

1

9

0

0

43

3

2

0

9

0

0

44

3

2

1

9

0

0

45

3

2

0

4

0

0

46

3

2

1

4

0

0

47

3

1

0

9

0

0

48

3

1

0

8

0

0

49

3

1

0

7

0

0

50

3

1

0

6

0

0

51

3

1

0

5

0

0

52

3

1

0

4

0

0

53

3

1

0

3

0

0

54

3

1

0

2

0

0

55

3

1

0

1,6

0

0

56

3

1

0

1,6

7

0

57

3

1

0

4,9

0

0

58

3

1

0

3,8

0

0

59

3

1

0

2,7

0

0

60

3

1

0

8,9

0

0

61

3

1

0

4,8,9

0

0

62

3

1

0

3,4,9

0

0

63

3

1

0

7,8,9

0

0

64

3

1

0

3,4,8,9

0

0

65

3

1

0

1,4,6,9

0

0

66

3

1

0

1,3,5,7,9

0

0

67

A1

16

1

9

0

2

6

2

68

A1

8

1

9

0

2

6

2

69

A1

4

1

9

0

1

6

2

70

A1

2

1

9

0

1

6

2

71

A1

2

1

4,9

7

1

3

2

72

A1

2

1

7,9

7

1

3

2

73

A1

2

1

7,9

0

1

6

2

74

A1

2

1

8,9

0

2

6

2

75

A1

2

1

4,9

0

2

6

2

76

A1

2

1

2,3,4,7,8,9

0

1

6

2

77

A1

1

0

9

0

2

6

2

78

A1

1

0

9

7

1

3

2

79

A1

1

0

9

0

1

6

2

80

A1

1

0

8,9

0

2

6

2

81

A1

1

0

4,9

0

1

6

2

82

A1

1

0

7,9

7

1

3

2

83

A1

1

0

3,4,8,9

0

1

6

2

84

A1

1

0

3,4,8,9

0

2

6

2

85

A1

1

0

1,3,5,7,9

0

1

6

2

86

A1

1

0

0,1,2,3,4,5,6,7,8,9

7

1

3

2

87

A2

16

1

9

0

2

3

4

88

A2

8

1

9

0

2

3

4

89

A2

4

1

9

0

1

3

4

90

A2

2

1

7,9

0

1

3

4

91

A2

2

1

8,9

0

2

3

4

92

A2

2

1

7,9

9

1

1

4

93

A2

2

1

4,9

9

1

1

4

94

A2

2

1

4,9

0

2

3

4

95

A2

2

1

2,3,4,7,8,9

0

1

3

4

96

A2

1

0

2

0

1

3

4

97

A2

1

0

7

0

1

3

4

98

A2

2

1

9

0

1

3

4

99

A2

1

0

9

0

2

3

4

100

A2

1

0

9

9

1

1

4

101

A2

1

0

9

0

1

3

4

102

A2

1

0

2,7

0

1

3

4

103

A2

1

0

8,9

0

2

3

4

104

A2

1

0

4,9

0

1

3

4

105

A2

1

0

7,9

9

1

1

4

106

A2

1

0

3,4,8,9

0

1

3

4

107

A2

1

0

3,4,8,9

0

2

3

4

108

A2

1

0

1,3,5,7,9

0

1

3

4

109

A2

1

0

0,1,2,3,4,5,6,7,8,9

9

1

1

4

110

A3

16

1

9

0

2

2

6

111

A3

8

1

9

0

2

2

6

112

A3

4

1

9

0

1

2

6

113

A3

2

1

4,9

7

1

1

6

114

A3

2

1

7,9

7

1

1

6

115

A3

2

1

7,9

0

1

2

6

116

A3

2

1

4,9

0

2

2

6

117

A3

2

1

8,9

0

2

2

6

118

A3

2

1

2,3,4,7,8,9

0

1

2

6

119

A3

1

0

2

0

1

2

6

120

A3

1

0

7

0

1

2

6

121

A3

2

1

9

0

1

2

6

122

A3

1

0

9

0

2

2

6

123

A3

1

0

9

7

1

1

6

124

A3

1

0

9

0

1

2

6

125

A3

1

0

2,7

0

1

2

6

126

A3

1

0

8,9

0

2

2

6

127

A3

1

0

4,9

0

1

2

6

128

A3

1

0

7,9

7

1

1

6

129

A3

1

0

3,4,8,9

0

1

2

6

130

A3

1

0

3,4,8,9

0

2

2

6

131

A3

1

0

1,3,5,7,9

0

1

2

6

132

A3

1

0

0,1,2,3,4,5,6,7,8,9

7

1

1

6

133

B1

4

1

9

2

1

6

2

134

B1

2

1

9

2

1

6

2

135

B1

2

1

7,9

2

1

6

2

136

B1

2

1

4,9

8

1

3

2

137

B1

2

1

4,9

2

2

6

2

138

B1

1

0

9

2

2

6

2

139

B1

1

0

9

8

1

3

2

140

B1

1

0

9

2

1

6

2

141

B1

1

0

8,9

2

2

6

2

142

B1

1

0

4,9

2

1

6

2

143

B1

1

0

7,9

8

1

3

2

144

B1

1

0

1,3,5,7,9

2

1

6

2

145

B4

16

1

9

0

2

1

12

146

B4

8

1

9

0

2

1

12

147

B4

4

1

9

2

1

1

12

148

B4

2

1

9

0

1

1

12

149

B4

2

1

9

2

1

1

12

150

B4

2

1

7,9

2

1

1

12

151

B4

2

1

4,9

2

1

1

12

152

B4

2

1

4,9

0

2

1

12

153

B4

2

1

8,9

0

2

1

12

154

B4

2

1

2,3,4,7,8,9

0

1

1

12

155

B4

1

0

1

0

1

1

12

156

B4

1

0

2

0

1

1

12

157

B4

1

0

4

0

1

1

12

158

B4

1

0

7

0

1

1

12

159

B4

1

0

9

0

1

1

12

160

B4

1

0

9

2

1

1

12

161

B4

1

0

9

0

2

1

12

162

B4

1

0

4,9

2

1

1

12

163

B4

1

0

7,9

2

1

1

12

164

B4

1

0

8,9

0

2

1

12

165

B4

1

0

3,4,8,9

2

1

1

12

166

B4

1

0

1,3,5,7,9

2

1

1

12

167

B4

1

0

0,1,2,3,4,5,6,7,8,9

0

2

1

12

168

B4

1

0

0,1,2,3,4,5,6,7,8,9

2

1

1

12

169

C0

16

1

9

2

2

6

2

170

C0

8

1

9

2

2

6

2

171

C0

4

1

9

2

1

6

2

172

C0

2

1

9

2

1

6

2

173

C0

2

1

8,9

2

2

6

2

174

C0

2

1

7,9

2

1

6

2

175

C0

2

1

7,9

8

1

3

2

176

C0

2

1

4,9

8

1

3

2

177

C0

2

1

4,9

2

2

6

2

178

C0

2

1

2,3,4,7,8,9

2

1

6

2

179

C0

1

0

9

2

2

6

2

180

C0

1

0

9

8

1

3

2

181

C0

1

0

9

2

1

6

2

182

C0

1

0

8,9

2

2

6

2

183

C0

1

0

4,9

2

1

6

2

184

C0

1

0

7,9

8

1

3

2

185

C0

1

0

3,4,8,9

2

1

6

2

186

C0

1

0

3,4,8,9

2

2

6

2

187

C0

1

0

1,3,5,7,9

2

1

6

2

188

C0

1

0

0,1,2,3,4,5,6,7,8,9

8

1

3

2

189

C2

16

1

9

2

2

2

6

190

C2

8

1

9

2

2

2

6

191

C2

4

1

9

2

1

2

6

192

C2

2

1

9

2

1

2

6

193

C2

2

1

8,9

2

2

2

6

194

C2

2

1

7,9

2

1

2

6

195

C2

2

1

7,9

8

1

1

6

196

C2

2

1

4,9

8

1

1

6

197

C2

2

1

4,9

2

2

2

6

198

C2

2

1

2,3,4,7,8,9

2

1

2

6

199

C2

8

1

9

8

2

1

6

200

C2

4

1

9

8

1

1

6

201

C2

1

0

9

2

2

2

6

202

C2

1

0

9

8

1

1

6

203

C2

1

0

9

2

1

2

6

204

C2

1

0

8,9

2

2

2

6

205

C2

1

0

4,9

2

1

2

6

206

C2

1

0

7,9

8

1

1

6

207

C2

1

0

3,4,8,9

2

1

2

6

208

C2

1

0

3,4,8,9

2

2

2

6

209

C2

1

0

1,3,5,7,9

2

1

2

6

210

C2

1

0

0,1,2,3,4,5,6,7,8,9

8

1

1

6

211

A1/B1

2

1

9

2

1

6

2

212

A1/B1

2

1

4,9

8

1

3

2

213

A1/B1

2

1

7,9

8

1

3

2

214

A1/B1

2

1

7,9

2

1

6

2

215

A1/B1

2

1

4,9

2

2

6

2

216

A1/B1

2

1

8,9

2

2

6

2

217

A1/B1

1

0

9

2

2

6

2

218

A1/B1

1

0

9

8

1

3

2

219

A1/B1

1

0

9

2

1

6

2

220

A1/B1

1

0

8,9

2

2

6

2

221

A1/B1

1

0

4,9

2

1

6

2

222

A1/B1

1

0

7,9

8

1

3

2

223

A1/B1

1

0

3,4,8,9

2

2

6

2

224

A1/B1

1

0

1,3,5,7,9

2

1

6

2

225

A1/B1

1

0

0,1,2,3,4,5,6,7,8,9

8

1

3

2

226

A2/B2

2

1

9

0

1

3

4

227

A2/B2

2

1

4,9

6

1

2

4

228

A2/B2

2

1

7,9

6

1

2

4

229

A2/B2

2

1

4,9

0

2

3

4

230

A2/B2

2

1

8,9

0

2

3

4

231

A2/B2

1

0

9

0

2

3

4

232

A2/B2

1

0

9

6

1

2

4

233

A2/B2

1

0

9

0

1

3

4

234

A2/B2

1

0

8,9

0

2

3

4

235

A2/B2

1

0

4,9

0

1

3

4

236

A2/B2

1

0

7,9

6

1

2

4

237

A2/B2

1

0

3,4,8,9

0

1

3

4

238

A2/B2

1

0

3,4,8,9

0

2

3

4

239

A2/B2

1

0

1,3,5,7,9

0

1

3

4

240

A2/B2

1

0

0,1,2,3,4,5,6,7,8,9

6

1

2

4

241

A3/B3

2

1

9

0

1

2

6

242

A3/B3

2

1

4,9

2

1

2

6

243

A3/B3

2

1

7,9

0

1

2

6

244

A3/B3

2

1

7,9

2

1

2

6

245

A3/B3

2

1

4,9

0

2

2

6

246

A3/B3

2

1

8,9

0

2

2

6

247

A3/B3

1

0

9

0

2

2

6

248

A3/B3

1

0

9

2

1

2

6

249

A3/B3

1

0

9

0

1

2

6

250

A3/B3

1

0

8,9

0

2

2

6

251

A3/B3

1

0

4,9

0

1

2

6

252

A3/B3

1

0

7,9

2

1

2

6

253

A3/B3

1

0

3,4,8,9

0

2

2

6

254

A3/B3

1

0

1,3,5,7,9

0

1

2

6

255

A3/B3

1

0

0,1,2,3,4,5,6,7,8,9

2

1

2

6

256

0

16

1

7

0

0

257

0

8

1

7

0

0

258

0

4

1

7

0

0

259

0

2

0

7

0

0

260

0

2

1

7

0

0

261

0

2

0

2

0

0

262

0

2

1

2

0

0

Table 6.3.3.2-4: Random access configurations for FR2 and unpaired spectrum.

PRACH
Config.
Index

Preamble format

Slot number

Starting symbol

Number of PRACH slots within a 60 kHz slot

,
number of time-domain PRACH occasions within a PRACH slot

,
PRACH duration

0

A1

16

1

4,9,14,19,24,29,34,39

0

2

6

2

1

A1

16

1

3,7,11,15,19,23,27,31,35,39

0

1

6

2

2

A1

8

1,2

9,19,29,39

0

2

6

2

3

A1

8

1

4,9,14,19,24,29,34,39

0

2

6

2

4

A1

8

1

3,7,11,15,19,23,27,31,35,39

0

1

6

2

5

A1

4

1

4,9,14,19,24,29,34,39

0

1

6

2

6

A1

4

1

4,9,14,19,24,29,34,39

0

2

6

2

7

A1

4

1

3,7,11,15,19,23,27,31,35,39

0

1

6

2

8

A1

2

1

7,15,23,31,39

0

2

6

2

9

A1

2

1

4,9,14,19,24,29,34,39

0

1

6

2

10

A1

2

1

4,9,14,19,24,29,34,39

0

2

6

2

11

A1

2

1

3,7,11,15,19,23,27,31,35,39

0

1

6

2

12

A1

1

0

19,39

7

1

3

2

13

A1

1

0

3,5,7

0

1

6

2

14

A1

1

0

24,29,34,39

7

1

3

2

15

A1

1

0

9,19,29,39

7

2

3

2

16

A1

1

0

17,19,37,39

0

1

6

2

17

A1

1

0

9,19,29,39

0

2

6

2

18

A1

1

0

4,9,14,19,24,29,34,39

0

1

6

2

19

A1

1

0

4,9,14,19,24,29,34,39

7

1

3

2

20

A1

1

0

3,5,7,9,11,13

7

1

3

2

21

A1

1

0

23,27,31,35,39

7

1

3

2

22

A1

1

0

7,15,23,31,39

0

1

6

2

23

A1

1

0

23,27,31,35,39

0

1

6

2

24

A1

1

0

13,14,15, 29,30,31,37,38,39

7

2

3

2

25

A1

1

0

3,7,11,15,19,23,27,31,35,39

7

1

3

2

26

A1

1

0

3,7,11,15,19,23,27,31,35,39

0

1

6

2

27

A1

1

0

1,3,5,7,…,37,39

0

1

6

2

28

A1

1

0

0,1,2,…,39

7

1

3

2

29

A2

16

1

4,9,14,19,24,29,34,39

0

2

3

4

30

A2

16

1

3,7,11,15,19,23,27,31,35,39

0

1

3

4

31

A2

8

1

4,9,14,19,24,29,34,39

0

2

3

4

32

A2

8

1

3,7,11,15,19,23,27,31,35,39

0

1

3

4

33

A2

8

1,2

9,19,29,39

0

2

3

4

34

A2

4

1

4,9,14,19,24,29,34,39

0

1

3

4

35

A2

4

1

4,9,14,19,24,29,34,39

0

2

3

4

36

A2

4

1

3,7,11,15,19,23,27,31,35,39

0

1

3

4

37

A2

2

1

7,15,23,31,39

0

2

3

4

38

A2

2

1

4,9,14,19,24,29,34,39

0

1

3

4

39

A2

2

1

4,9,14,19,24,29,34,39

0

2

3

4

40

A2

2

1

3,7,11,15,19,23,27,31,35,39

0

1

3

4

41

A2

1

0

19,39

5

1

2

4

42

A2

1

0

3,5,7

0

1

3

4

43

A2

1

0

24,29,34,39

5

1

2

4

44

A2

1

0

9,19,29,39

5

2

2

4

45

A2

1

0

17,19,37,39

0

1

3

4

46

A2

1

0

9, 19, 29, 39

0

2

3

4

47

A2

1

0

7,15,23,31,39

0

1

3

4

48

A2

1

0

23,27,31,35,39

5

1

2

4

49

A2

1

0

23,27,31,35,39

0

1

3

4

50

A2

1

0

3,5,7,9,11,13

5

1

2

4

51

A2

1

0

3,5,7,9,11,13

0

1

3

4

52

A2

1

0

4,9,14,19,24,29,34,39

5

1

2

4

53

A2

1

0

4,9,14,19,24,29,34,39

0

1

3

4

54

A2

1

0

13,14,15, 29,30,31,37,38,39

5

2

2

4

55

A2

1

0

3,7,11,15,19,23,27,31,35,39

5

1

2

4

56

A2

1

0

3,7,11,15,19,23,27,31,35,39

0

1

3

4

57

A2

1

0

1,3,5,7,…,37,39

0

1

3

4

58

A2

1

0

0,1,2,…,39

5

1

2

4

59

A3

16

1

4,9,14,19,24,29,34,39

0

2

2

6

60

A3

16

1

3,7,11,15,19,23,27,31,35,39

0

1

2

6

61

A3

8

1

4,9,14,19,24,29,34,39

0

2

2

6

62

A3

8

1

3,7,11,15,19,23,27,31,35,39

0

1

2

6

63

A3

8

1,2

9,19,29,39

0

2

2

6

64

A3

4

1

4,9,14,19,24,29,34,39

0

1

2

6

65

A3

4

1

4,9,14,19,24,29,34,39

0

2

2

6

66

A3

4

1

3,7,11,15,19,23,27,31,35,39

0

1

2

6

67

A3

2

1

4,9,14,19,24,29,34,39

0

1

2

6

68

A3

2

1

4,9,14,19,24,29,34,39

0

2

2

6

69

A3

2

1

3,7,11,15,19,23,27,31,35,39

0

1

2

6

70

A3

1

0

19,39

7

1

1

6

71

A3

1

0

3,5,7

0

1

2

6

72

A3

1

0

9,11,13

2

1

2

6

73

A3

1

0

24,29,34,39

7

1

1

6

74

A3

1

0

9,19,29,39

7

2

1

6

75

A3

1

0

17,19,37,39

0

1

2

6

76

A3

1

0

9,19,29,39

0

2

2

6

77

A3

1

0

7,15,23,31,39

0

1

2

6

78

A3

1

0

23,27,31,35,39

7

1

1

6

79

A3

1

0

23,27,31,35,39

0

1

2

6

80

A3

1

0

3,5,7,9,11,13

0

1

2

6

81

A3

1

0

3,5,7,9,11,13

7

1

1

6

82

A3

1

0

4,9,14,19,24,29,34,39

0

1

2

6

83

A3

1

0

4,9,14,19,24,29,34,39

7

1

1

6

84

A3

1

0

13,14,15, 29,30,31,37,38,39

7

2

1

6

85

A3

1

0

3,7,11,15,19,23,27,31,35,39

7

1

1

6

86

A3

1

0

3,7,11,15,19,23,27,31,35,39

0

1

2

6

87

A3

1

0

1,3,5,7,…,37,39

0

1

2

6

88

A3

1

0

0,1,2,…,39

7

1

1

6

89

B1

16

1

4,9,14,19,24,29,34,39

2

2

6

2

90

B1

8

1

4,9,14,19,24,29,34,39

2

2

6

2

91

B1

8

1,2

9,19,29,39

2

2

6

2

92

B1

4

1

4,9,14,19,24,29,34,39

2

2

6

2

93

B1

2

1

4,9,14,19,24,29,34,39

2

2

6

2

94

B1

2

1

3,7,11,15,19,23,27,31,35,39

2

1

6

2

95

B1

1

0

19,39

8

1

3

2

96

B1

1

0

3,5,7

2

1

6

2

97

B1

1

0

24,29,34,39

8

1

3

2

98

B1

1

0

9,19,29,39

8

2

3

2

99

B1

1

0

17,19,37,39

2

1

6

2

100

B1

1

0

9,19,29,39

2

2

6

2

101

B1

1

0

7,15,23,31,39

2

1

6

2

102

B1

1

0

23,27,31,35,39

8

1

3

2

103

B1

1

0

23,27,31,35,39

2

1

6

2

104

B1

1

0

3,5,7,9,11,13

8

1

3

2

105

B1

1

0

4,9,14,19,24,29,34,39

8

1

3

2

106

B1

1

0

4,9,14,19,24,29,34,39

2

1

6

2

107

B1

1

0

3,7,11,15,19,23,27,31,35,39

8

1

3

2

108

B1

1

0

13,14,15, 29,30,31,37,38,39

8

2

3

2

109

B1

1

0

3,7,11,15,19,23,27,31,35,39

2

1

6

2

110

B1

1

0

1,3,5,7,…,37,39

2

1

6

2

111

B1

1

0

0,1,2,…,39

8

1

3

2

112

B4

16

1,2

4,9,14,19,24,29,34,39

0

2

1

12

113

B4

16

1,2

3,7,11,15,19,23,27,31,35,39

0

1

1

12

114

B4

8

1,2

4,9,14,19,24,29,34,39

0

2

1

12

115

B4

8

1,2

3,7,11,15,19,23,27,31,35,39

0

1

1

12

116

B4

8

1,2

9,19,29,39

0

2

1

12

117

B4

4

1

4,9,14,19,24,29,34,39

0

1

1

12

118

B4

4

1

4,9,14,19,24,29,34,39

0

2

1

12

119

B4

4

1,2

3,7,11,15,19,23,27,31,35,39

0

1

1

12

120

B4

2

1

7,15,23,31,39

2

2

1

12

121

B4

2

1

4,9,14,19,24,29,34,39

0

1

1

12

122

B4

2

1

4,9,14,19,24,29,34,39

0

2

1

12

123

B4

2

1

3,7,11,15,19,23,27,31,35,39

0

1

1

12

124

B4

1

0

19, 39

2

2

1

12

125

B4

1

0

17, 19, 37, 39

0

1

1

12

126

B4

1

0

24,29,34,39

2

1

1

12

127

B4

1

0

9,19,29,39

2

2

1

12

128

B4

1

0

9,19,29,39

0

2

1

12

129

B4

1

0

7,15,23,31,39

0

1

1

12

130

B4

1

0

7,15,23,31,39

0

2

1

12

131

B4

1

0

23,27,31,35,39

0

1

1

12

132

B4

1

0

23,27,31,35,39

2

2

1

12

133

B4

1

0

9,11,13,15,17,19

0

1

1

12

134

B4

1

0

3,5,7,9,11,13

2

1

1

12

135

B4

1

0

4,9,14,19,24,29,34,39

0

1

1

12

136

B4

1

0

4,9,14,19,24,29,34,39

2

2

1

12

137

B4

1

0

13,14,15, 29,30,31,37,38,39

2

2

1

12

138

B4

1

0

3,7,11,15,19,23,27,31,35,39

0

1

1

12

139

B4

1

0

3,7,11,15,19,23,27,31,35,39

2

1

1

12

140

B4

1

0

3, 5, 7, …, 23,25

2

1

1

12

141

B4

1

0

3, 5, 7, …, 23,25

0

2

1

12

142

B4

1

0

1,3,5,7,…,37,39

0

1

1

12

143

B4

1

0

0, 1, 2,…, 39

2

1

1

12

144

C0

16

1

4,9,14,19,24,29,34,39

0

2

7

2

145

C0

16

1

3,7,11,15,19,23,27,31,35,39

0

1

7

2

146

C0

8

1

4,9,14,19,24,29,34,39

0

1

7

2

147

C0

8

1

3,7,11,15,19,23,27,31,35,39

0

1

7

2

148

C0

8

1,2

9,19,29,39

0

2

7

2

149

C0

4

1

4,9,14,19,24,29,34,39

0

1

7

2

150

C0

4

1

4,9,14,19,24,29,34,39

0

2

7

2

151

C0

4

1

3,7,11,15,19,23,27,31,35,39

0

1

7

2

152

C0

2

1

7,15,23,31,39

0

2

7

2

153

C0

2

1

4,9,14,19,24,29,34,39

0

1

7

2

154

C0

2

1

4,9,14,19,24,29,34,39

0

2

7

2

155

C0

2

1

3,7,11,15,19,23,27,31,35,39

0

1

7

2

156

C0

1

0

19,39

8

1

3

2

157

C0

1

0

3,5,7

0

1

7

2

158

C0

1

0

24,29,34,39

8

1

3

2

159

C0

1

0

9,19,29,39

8

2

3

2

160

C0

1

0

17,19,37,39

0

1

7

2

161

C0

1

0

9,19,29,39

0

2

7

2

162

C0

1

0

23,27,31,35,39

8

1

3

2

163

C0

1

0

7,15,23,31,39

0

1

7

2

164

C0

1

0

23,27,31,35,39

0

1

7

2

165

C0

1

0

3,5,7,9,11,13

8

1

3

2

166

C0

1

0

4,9,14,19,24,29,34,39

8

1

3

2

167

C0

1

0

4,9,14,19,24,29,34,39

0

1

7

2

168

C0

1

0

13,14,15, 29,30,31,37,38,39

8

2

3

2

169

C0

1

0

3,7,11,15,19,23,27,31,35,39

8

1

3

2

170

C0

1

0

3,7,11,15,19,23,27,31,35,39

0

1

7

2

171

C0

1

0

1,3,5,7,…,37,39

0

1

7

2

172

C0

1

0

0,1,2,…,39

8

1

3

2

173

C2

16

1

4,9,14,19,24,29,34,39

0

2

2

6

174

C2

16

1

3,7,11,15,19,23,27,31,35,39

0

1

2

6

175

C2

8

1

4,9,14,19,24,29,34,39

0

2

2

6

176

C2

8

1

3,7,11,15,19,23,27,31,35,39

0

1

2

6

177

C2

8

1,2

9,19,29,39

0

2

2

6

178

C2

4

1

4,9,14,19,24,29,34,39

0

1

2

6

179

C2

4

1

4,9,14,19,24,29,34,39

0

2

2

6

180

C2

4

1

3,7,11,15,19,23,27,31,35,39

0

1

2

6

181

C2

2

1

7,15,23,31,39

2

2

2

6

182

C2

2

1

4,9,14,19,24,29,34,39

0

1

2

6

183

C2

2

1

4,9,14,19,24,29,34,39

0

2

2

6

184

C2

2

1

3,7,11,15,19,23,27,31,35,39

0

1

2

6

185

C2

1

0

19,39

2

1

2

6

186

C2

1

0

3,5,7

0

1

2

6

187

C2

1

0

24,29,34,39

7

1

1

6

188

C2

1

0

9,19,29,39

7

2

1

6

189

C2

1

0

17,19,37,39

0

1

2

6

190

C2

1

0

9,19,29,39

2

2

2

6

191

C2

1

0

7,15,23,31,39

2

1

2

6

192

C2

1

0

3,5,7,9,11,13

7

1

1

6

193

C2

1

0

23,27,31,35,39

7

2

1

6

194

C2

1

0

23,27,31,35,39

0

1

2

6

195

C2

1

0

4,9,14,19,24,29,34,39

7

2

1

6

196

C2

1

0

4,9,14,19,24,29,34,39

2

1

2

6

197

C2

1

0

13,14,15, 29,30,31,37,38,39

7

2

1

6

198

C2

1

0

3,7,11,15,19,23,27,31,35,39

7

1

1

6

199

C2

1

0

3,7,11,15,19,23,27,31,35,39

0

1

2

6

200

C2

1

0

1,3,5,7,…,37,39

0

1

2

6

201

C2

1

0

0,1,2,…,39

7

1

1

6

202

A1/B1

16

1

4,9,14,19,24,29,34,39

2

1

6

2

203

A1/B1

16

1

3,7,11,15,19,23,27,31,35,39

2

1

6

2

204

A1/B1

8

1

4,9,14,19,24,29,34,39

2

1

6

2

205

A1/B1

8

1

3,7,11,15,19,23,27,31,35,39

2

1

6

2

206

A1/B1

4

1

4,9,14,19,24,29,34,39

2

1

6

2

207

A1/B1

4

1

3,7,11,15,19,23,27,31,35,39

2

1

6

2

208

A1/B1

2

1

4,9,14,19,24,29,34,39

2

1

6

2

209

A1/B1

1

0

19,39

8

1

3

2

210

A1/B1

1

0

9,19,29,39

8

1

3

2

211

A1/B1

1

0

17,19,37,39

2

1

6

2

212

A1/B1

1

0

9,19,29,39

2

2

6

2

213

A1/B1

1

0

23,27,31,35,39

8

1

3

2

214

A1/B1

1

0

7,15,23,31,39

2

1

6

2

215

A1/B1

1

0

23,27,31,35,39

2

1

6

2

216

A1/B1

1

0

4,9,14,19,24,29,34,39

8

1

3

2

217

A1/B1

1

0

4,9,14,19,24,29,34,39

2

1

6

2

218

A1/B1

1

0

3,7,11,15,19,23,27,31,35,39

2

1

6

2

219

A1/B1

1

0

1,3,5,7,…,37,39

2

1

6

2

220

A2/B2

16

1

4,9,14,19,24,29,34,39

2

1

3

4

221

A2/B2

16

1

3,7,11,15,19,23,27,31,35,39

2

1

3

4

222

A2/B2

8

1

4,9,14,19,24,29,34,39

2

1

3

4

223

A2/B2

8

1

3,7,11,15,19,23,27,31,35,39

2

1

3

4

224

A2/B2

4

1

4,9,14,19,24,29,34,39

2

1

3

4

225

A2/B2

4

1

3,7,11,15,19,23,27,31,35,39

2

1

3

4

226

A2/B2

2

1

4,9,14,19,24,29,34,39

2

1

3

4

227

A2/B2

1

0

19,39

6

1

2

4

228

A2/B2

1

0

9,19,29,39

6

1

2

4

229

A2/B2

1

0

17,19,37,39

2

1

3

4

230

A2/B2

1

0

9,19,29,39

2

2

3

4

231

A2/B2

1

0

23,27,31,35,39

6

1

2

4

232

A2/B2

1

0

7,15,23,31,39

2

1

3

4

233

A2/B2

1

0

23,27,31,35,39

2

1

3

4

234

A2/B2

1

0

4,9,14,19,24,29,34,39

6

1

2

4

235

A2/B2

1

0

4,9,14,19,24,29,34,39

2

1

3

4

236

A2/B2

1

0

3,7,11,15,19,23,27,31,35,39

2

1

3

4

237

A2/B2

1

0

1,3,5,7,…,37,39

2

1

3

4

238

A3/B3

16

1

4,9,14,19,24,29,34,39

2

1

2

6

239

A3/B3

16

1

3,7,11,15,19,23,27,31,35,39

2

1

2

6

240

A3/B3

8

1

4,9,14,19,24,29,34,39

2

1

2

6

241

A3/B3

8

1

3,7,11,15,19,23,27,31,35,39

2

1

2

6

242

A3/B3

4

1

4,9,14,19,24,29,34,39

2

1

2

6

243

A3/B3

4

1

3,7,11,15,19,23,27,31,35,39

2

1

2

6

244

A3/B3

2

1

4,9,14,19,24,29,34,39

2

1

2

6

245

A3/B3

1

0

19,39

2

1

2

6

246

A3/B3

1

0

9,19,29,39

2

1

2

6

247

A3/B3

1

0

17,19,37,39

2

1

2

6

248

A3/B3

1

0

9,19,29,39

2

2

2

6

249

A3/B3

1

0

7,15,23,31,39

2

1

2

6

250

A3/B3

1

0

23,27,31,35,39

2

1

2

6

251

A3/B3

1

0

23,27,31,35,39

2

2

2

6

252

A3/B3

1

0

4,9,14,19,24,29,34,39

2

1

2

6

253

A3/B3

1

0

4,9,14,19,24,29,34,39

2

2

2

6

254

A3/B3

1

0

3,7,11,15,19,23,27,31,35,39

2

1

2

6

255

A3/B3

1

0

1,3,5,7,…,37,39

2

1

2

6