8.7.11 TDD FDD CA Sustained data rate performance (4 layer MIMO)

36.521-13GPPEvolved Universal Terrestrial Radio Access (E-UTRA)Part 1: Conformance testingRadio transmission and receptionRelease 17TSUser Equipment (UE) conformance specification

8.7.11.1 Minimum conformance requirements

The parameters specified in Table 8.7.11.1-1 are valid for all TDD FDD CA tests unless otherwise stated.

Table 8.7.11.1-1: Common Test Parameters (TDD FDD CA)

Parameter

Unit

FDD CC

TDD CC

Transmission mode

3

3

Uplink downlink configuration (Note 1)

N/A

1

Special subframe configuration (Note 2)

N/A

4

Cyclic prefix

Normal

Normal

Cell ID

0

0

Inter-TTI Distance

1

1

Number of HARQ processes per component carrier

Processes

8

8

Maximum number of HARQ transmission

4

4

Redundancy version coding sequence

{0,0,1,2} for 64QAM and 256QAM

{0,0,1,2} for 64QAM and 256QAM

Number of OFDM symbols for PDCCH per component carrier

OFDM symbols

1

1

Cross carrier scheduling

Not configured

Not configured

Propagation condition

Static propagation condition

No external noise sources are applied

Static propagation condition

No external noise sources are applied

at antenna port

dBm/15kHz

-85

-85

Antenna configuration

2 layer CC

2×2 or 2×4

2×2 or 2×4

4 layer CC

4×4

4×4

Codebook subset

restriction

2 layer CC

10

10

4 layer CC

1000

1000

Downlink power

allocation

2 layer CC

= -3dB, = -3dB, σ = 0dB

= -3dB, = -3dB, σ = 0dB

4 layer CC

= -6dB, = -6dB, σ = 3dB

= -6dB, = -6dB, σ = 3dB

Symbols for unused PRBs

OP.1 FDD

OP.1 TDD

Note 1: as specified in Table 4.2-2 in TS 36.211 [4].

Note 2: as specified in Table 4.2-1 in TS 36.211 [4].

For UE not supporting 256QAM, the TB success rate shall be higher than 85% when PDSCH are scheduled with FRC in Table 8.7.11.1-2 with the downlink physical channel setup according to Annex C.3.2.

For UE supporting 256QAM, the TB success rate shall be higher than 85% when PDSCH are scheduled with FRC in Table 8.7.11.1-3 with the downlink physical channel setup according to Annex C.3.2. For UE supporting 256QAM, the requirement with 64QAM is not applicable.

The TB success rate is defined as 100%*NDL_correct_rx/ (NDL_newtx + NDL_retx), where NDL_newtx is the number of newly transmitted DL transport blocks, NDL_retx is the number of retransmitted DL transport blocks, and NDL_correct_rx is the number of correctly received DL transport blocks. The TB success rate shall be sustained during at least 300 frames.

Table 8.7.11.1-2: Per-CC FRC for SDR test (TDD-FDD 64QAM)

MIMO layer

Bandwidth

FDD Reference channel

TDD Reference channel

2 layer

5

R.31-6 FDD

N/A

10

R.31-3A FDD

R.31-6 TDD

15

R.31-5 FDD

R.31-5 TDD

20

R.31-4 FDD

R.31-4 TDD

4 layer

5

R.31-10 FDD

N/A

10

R.31-7 FDD

R.31-7 TDD

15

R.31-8 FDD

R.31-8 TDD

20

R.31-9 FDD

R.31-9 TDD

Table 8.7.11.1-3: Per-CC FRC for SDR test (TDD-FDD 256QAM)

MIMO layer

Bandwidth

FDD Reference channel

TDD Reference channel

2 layer

5

R.68-3 FDD

N/A

10

R.68-2 FDD

R.68-2 TDD

15

R.68-1 FDD

R.68-1 TDD

20

R.68 FDD

R.68 TDD

4 layer

5

R.68-7 FDD

N/A

10

R.68-4 FDD

R.68-5 TDD

15

R.68-5 FDD

R.68-6 TDD

20

R.68-6 FDD

R.68-7 TDD

CA configuration, bandwidth combination and MIMO layer on each CC is determined by following procedure.

– Select one CA bandwidth combination among all supported CA configurations with bandwidth combination and MIMO layer on each CC that leads to largest equivalent aggregated bandwidth among all CA bandwidth combinations supported by UE. Equivalent aggregated bandwidth is defined as

where is number of CCs, and is MIMO layer and bandwidth of CC .

– When there are multiple sets of {CA configuration, bandwidth combination, MIMO layer} with same largest aggregated bandwidth, select one among sets with largest number of 4 layer CCs.

– When there are multiple sets of {CA configuration, bandwidth combination, MIMO layer} with same largest aggregated bandwidth, select one among sets with largest number of 4 layer CCs.

The normative reference for this requirement is TS 36.101 [2] clause 8.7.11.

8.7.11.2 TDD FDD CA sustained data rate performance for 4 layer MIMO (2DL CA)

Editor’s note: Simplification of test point tables, to reduce future maintenance, needs further investigation.

8.7.11.2.1 Test purpose

Same test purpose as 8.7.1.1.

8.7.11.2.2 Test applicability

This test applies to all types of UE Release 12 and forward of category 9, 10, 11 and 12, and DL category 9, 10, 11, 12 and 15 that support E-UTRA FDD and TDD, 2DL TDD-FDD CA and support 4 Rx antenna ports and 4-layer spatial multiplexing for PDSCH transmission mode 3 in any RF band of the DL CA configuration.

8.7.11.2.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 8.7.11.1.

8.7.11.2.4 Test description

8.7.11.2.4.1 Initial conditions

For UE not supporting 256QAM, the requirements are specified in Table 8.7.11.1-2, with the addition of the parameters in Table 8.7.11.2.4.1-1. The test points are applied to UE category and bandwidth combination with maximum equivalent aggregated bandwidth as specified in Table 8.7.11.2.4.1-2.

For UE supporting 256QAM, the requirements are specified in Table 8.7.11.1-3, with the addition of the parameters in Table 8.7.11.2.4.1-1. The test points are applied to UE category and bandwidth combination with maximum equivalent aggregated bandwidth as specified in Table 8.7.11.2.4.1-3.

Table 8.7.11.2.4.1-1: Test parameters for sustained downlink data rate (TDD FDD 2DL CA)

Test

Bandwidth (MHz)

MIMO layer

Antenna configuration

Equivalent aggr. BW (MHz)

PDCP SDU size [Octets] 64QAM

PDCP SDU size [Octets] 256QAM

Total

FDD CC

TDD CC

1

2×20

20

20

4 layer

4×4

160

1455

1408

2

15+20

15

20

4 layer

4×4

140

1455

1408

3

20

20

2 layer

2×2

120

1341

1355

20

20

4 layer

4×4

4

20

20

2 layer

2×2

120

1341

1355

20

20

4 layer

4×4

5

15

15

2 layer

2×2

110

1371

1341

20

20

4 layer

4×4

6

20

20

2 layer

2×2

100

1341

1355

15

15

4 layer

4×4

7

10

10

2 layer

2×2

100

1141

1218

20

20

4 layer

4×4

Editor’s note: Tests in Table 8.7.11.2.4.1-1 are covering maximum aggregated bandwidth for each Bandwidth combination set with 2DL CA which are defined in Table 5.4.2A.1-2.

Table 8.7.11.2.4.1-2: Test points for sustained data rate (FRC 64QAM)

Maximum supported equivalent aggr. BW

Cat. 9, 10

Cat. 11, 12

DL Cat. 13

DL Cat. 15

DL Cat. 16

DL Cat. 18

DL Cat. 19

Bagg (MHz)

BW combi-nation (MHz)

MIMO layer

DL Cat. 9, 10

DL Cat. 11, 12

FDD CC

TDD CC

160

20

20

4

3

1

140

15

20

4

2

2

120

20

2

3

3

20

4

120

20

2

4

4

20

4

110

15

2

5

5

20

4

100

20

2

6

6

15

4

100

10

2

7

7

20

4

Note 1: Select the largest equivalent aggregated bandwidth supported by the UE as defined in clause 8.7.11.1. Only one test point to be tested.

Table 8.7.11.2.4.1-3: Test points for sustained data rate (FRC 256QAM)

Maximum supported equivalent aggr. BW

Cat. 11, 12

DL Cat. 13

DL Cat. 15

DL Cat. 16

DL Cat. 18

DL Cat. 19

Bagg (MHz)

BW combi-nation (MHz)

MIMO layer

DL Cat. 11, 12

FDD CC

TDD CC

160

20

20

4

3

5

1

140

15

20

4

2

5

2

120

20

2

3

5

3

20

4

120

20

2

4

6

4

20

4

110

15

2

5

5

5

20

4

100

20

2

6

6

6

15

4

100

10

2

7

7

7

20

4

Note 1: Select the largest equivalent aggregated bandwidth supported by the UE as defined in clause 8.7.11.1. Only one test point to be tested.

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Maximum WGap for Intra-band non-contiguous CA, otherwise Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: according to Table 8.7.11.2.4.1-1 depending on the UE category according to Table 8.7.11.2.4.1-2 for UE not supporting 256QAM or Table 8.7.11.2.4.1-3 for UE supporting 256QAM.

1. Connect the SS to the UE antenna connector(s) as shown in TS 36.508 [7] Annex A, Figure A.91.

2. For UE not supporting 256QAM the parameter settings for the cell are set up according to Table 8.7.11.1-1, Table 8.7.11.2.4.1-1 depending on the UE category according to Table 8.7.11.2.4.1-2. For UE supporting 256QAM the parameter settings for the cell are set up according to Table 8.7.11.1-1, Table 8.7.11.2.4.1-1 depending on the UE category according to Table 8.7.11.2.4.1-3.

3. Downlink signals for PCC are initially set up according to Annex C.0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.

4. Propagation conditions are set according to Annex B.0.

5. Ensure the UE is in State 4A-RF according to TS 36.508 [7] clause 5.2A.3. Message contents are defined in clause 8.7.11.2.4.3.

8.7.11.2.4.2 Test procedure

1. Configure SCC according to Annex C.0, C.1 and Annex C.3.2 for all downlink physical channels.

2. The SS shall configure SCC as per TS 36.508 [7] clause 5.2A.4. PhysicalConfigDedicated-DEFAULT is defined in Table 8.7.11.2.4.3-3, PhysicalConfigDedicatedSCell-r10-DEFAULT is defined in Table 8.7.11.2.4.3-4. Cell ID = 1 applies to S-Cell.

3. The SS activates SCC by sending the activation MAC-CE (Refer TS 36.321 [13], clauses 5.13, 6.1.3.8). Wait for at least 2 seconds (Refer TS 36.133, clauses 8.3.3.2).

4. Propagation conditions are set according to Annex B.1 (No external noise sources are applied).

5. For UE not supporting 256QAM the SS looks up TBsize in Annex A.3.9 for the RMCs in accordance with table 8.7.11.1-2, for the tests to be performed depending on the UE category according to Table 8.7.11.2.4.1-2. For UE supporting 256QAM the SS looks up TBsize in Annex A.3.9 for the RMCs in accordance with table 8.7.11.1-3, for the tests to be performed depending on the UE category according to Table 8.7.11.2.4.1-3.

6. The SS sets the counters NDL_newtx, NDL_retx, NUL_PDCP and NDDL_PDCP to 0.

7. For each new DL HARQ transmission the SS generates sufficient PDCP SDUs to fill up the TB (Note 1). The SS ciphers the PDCP SDUs, concatenates the resultant PDCP PDUs to form an RLC PDU and then a MAC PDU. The SS transmits the MAC PDU. The SS increments then NDL_newtx by one and NDL_PDCP by the number of new PDCP SDUs (Note 1) included in the sent MAC PDU.

8. If PHY requests a DL HARQ retransmission, the SS performs a HARQ retransmission and increments NDL_retx by one.

9. Steps 7 to 8 are repeated at every TTI for at least 300 frames and the SS waits for 300ms to let any HARQ retransmissions and RLC retransmissions to finish.

10. For each PDCP SDU received at the SS, if the content of the data matches that of the truncated version of the original PDCP SDU generated at the SS, the SS increments NUL_PDCP by one

11. The SS calculates the TB success rate as A = 100%*NDL_newtx / (NDL_newtx + NDL_retx). Measurements are not based on UE feedback but on SS counters instead (NDL_newtx and NDL_retx) in order to validate HARQ feedback received from the UE.

12. The SS calculates the PDCP SDU loss as B = NDL_PDCP – NUL_PDCP

13. The UE passes the test if A > 85% and B = 0.

NOTE 1: In case of RLC PDU retransmission, the number of new required PDCP SDUs is as many as to fill the rest of TB.

8.7.11.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clauses 5.5 and 4.6 and 4.7A, with the following exceptions:

Table 8.7.11.2.4.3-1: CLOSE UE TEST LOOP (in the preamble)

Derivation Path: 36.509 clause 6.1

Information Element

Value/remark

Comment

Condition

Protocol discriminator

1 1 1 1

Skip indicator

0 0 0 0

Message type

1 0 0 0 0 0 0 0

UE test loop mode

0 0 0 0 0 0 0 0

UE test loop mode A

UE test loop mode A LB setup

Length of UE test loop mode A LB setup list in bytes

0 0 0 0 0 0 1 1

Length of one LB setup DRB (3 bytes)

LB setup DRB

0 0 0 0 0 0 0 0,

0 0 1 0 1 0 0 0,

0 0 0 Q4 Q3 Q2 Q1 Q0

UL PDCP SDU size = 40 bits (5 bytes)

Q4..Q0 = Data Radio Bearer identity number for the default radio bearer. See 36.509 clause 6.1

UE test loop mode B LB setup

Not present

Table 8.7.11.2.4.3-2: SecurityModeCommand (in the preamble)

Derivation Path: TS 36.508 clause 4.6.1 table 4.6.1-19

Information Element

Value/remark

Comment

Condition

SecurityModeCommand ::= SEQUENCE {

criticalExtensions CHOICE {

c1 CHOICE{

securityModeCommand-r8 SEQUENCE {

securityConfiguration SEQUENCE {

cipheringAlgorithm

eea2

nextHopChainingCount

Not present

}

nonCriticalExtension SEQUENCE {}

Not present

}

}

}

}

Table 8.7.11.2.4.3-3: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1, Table 5.5.1.2-1

Information Element

Value/remark

Comment

Condition

PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {

antennaInfo CHOICE {

explicitValue ::= SEQUENCE {

transmissionMode

tm3

Transmission mode 3

codebookSubsetRestriction CHOICE {

n2TxAntenna-tm3

10

2TX

n4TxAntenna-tm3

1000

4TX

}

ue-TransmitAntennaSelection CHOICE {

Release

NULL

}

}

}

}

Condition

Explanation

2TX

2 SS Tx antenna P-Cell

4TX

4 SS Tx antenna P-Cell

Table 8.7.11.2.4.3-4: PhysicalConfigDedicatedSCell-r10-DEFAULT

Derivation Path: 36.508 clause 4.6.3 Table 4.6.3-6A

Information Element

Value/remark

Comment

Condition

PhysicalConfigDedicatedSCell-r10-DEFAULT ::= SEQUENCE {

nonUL-Configuration-r10 SEQUENCE {

antennaInfo-r10 CHOICE {

transmissionMode-r10

tm3

Transmission mode 3

codebookSubsetRestriction-r10

10

2TX

codebookSubsetRestriction-r10

1000

4TX

ue-TransmitAntennaSelection CHOICE {

Release

NULL

}

}

pdsch-ConfigDedicated-r10 CHOICE {

4TX

p-a

dB-6

}

}

}

Condition

Explanation

2TX

2 SS Tx antenna S-Cell

4TX

4 SS Tx antenna S-Cell

8.7.11.2.5 Test requirement

The pass fail decision is as specified in the test procedure in clause 8.7.11.2.4.2.

There are no parameters in the test setup or measurement process whose variation impacts the results so there are no applicable test tolerances for this test.

8.7.11.3 TDD FDD CA sustained data rate performance for 4 layer MIMO (3DL CA)

Editor’s note: Simplification of test point tables, to reduce future maintenance, needs further investigation.

8.7.11.3.1 Test purpose

Same test purpose as 8.7.1.1.

8.7.11.3.2 Test applicability

This test applies to all types of UE Release 12 and forward of category 11 and 12, and DL category 11, 12, 15, 16 and 18 that support E-UTRA FDD and TDD, 3DL TDD-FDD CA and support 4 Rx antenna ports and 4-layer spatial multiplexing for PDSCH transmission mode 3 in any RF band of the 3DL CA configuration.

8.7.11.3.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 8.7.11.1.

8.7.11.3.4 Test description

8.7.11.3.4.1 Initial conditions

For UE not supporting 256QAM, the requirements are specified in Table 8.7.11.1-2, with the addition of the parameters in Table 8.7.11.3.4.1-1. The test points are applied to UE category and bandwidth combination with maximum equivalent aggregated bandwidth as specified in Table 8.7.11.3.4.1-2.

For UE supporting 256QAM, the requirements are specified in Table 8.7.11.1-3, with the addition of the parameters in Table 8.7.11.3.4.1-1. The test points are applied to UE category and bandwidth combination with maximum equivalent aggregated bandwidth as specified in Table 8.7.11.3.4.1-3.

Table 8.7.11.3.4.1-1: Test parameters for sustained downlink data rate (TDD FDD 3DL CA)

Test

Bandwidth (MHz)

MIMO layer

Antenna configuration

Equivalent aggr. BW (MHz)

PDCP SDU size [Octets] 64QAM

PDCP SDU size [Octets] 256QAM

Total

FDD CC

TDD CC

1

3×20

20

2×20

4 layer

4×4

240

1455

1408

2

3×20

2×20

20

4 layer

4×4

240

1455

1408

3

15+20+20

15

2×20

4 layer

4×4

220

1455

1408

4

15+20+20

15+20

20

4 layer

4×4

220

1455

1408

5

20

20

2 layer

2×2

200

1341

1355

2×20

2×20

4 layer

4×4

6

20

20

2 layer

2×2

200

1341

1355

2×20

20

20

4 layer

4×4

7

20

20

2 layer

2×2

200

1341

1355

2×20

20

20

4 layer

4×4

8

20

20

2 layer

2×2

200

1341

1355

2×20

2×20

4 layer

4×4

9

10+20+20

10

2×20

4 layer

4×4

200

1323

1319

10

15

15

2 layer

2×2

190

1371

1341

2×20

2×20

4 layer

4×4

11

15

15

2 layer

2×2

190

1371

1341

2×20

20

20

4 layer

4×4

12

20

20

2 layer

2×2

180

1341

1355

15+20

15

20

4 layer

4×4

13

20

20

2 layer

2×2

180

1341

1355

15+20

15+20

4 layer

4×4

14

10

10

2 layer

2×2

180

1141

1218

2×20

2×20

4 layer

4×4

15

10

10

2 layer

2×2

180

1141

1218

2×20

20

20

4 layer

4×4

16

15

15

2 layer

2×2

170

1371

1341

15+20

15

20

4 layer

4×4

17

2×20

20

20

2 layer

2×2

160

1341

1355

20

20

4 layer

4×4

18

2×20

2×20

2 layer

2×2

160

1341

1355

20

20

4 layer

4×4

19

2×20

2×20

2 layer

2×2

160

1341

1355

20

20

4 layer

4×4

20

2×20

20

20

2 layer

2×2

160

1341

1355

20

20

4 layer

4×4

21

10

10

2 layer

2×2

160

1141

1218

15+20

15+20

4 layer

4×4

22

10

10

2 layer

2×2

160

1141

1218

15+20

15

20

4 layer

4×4

23

15+20

15+20

2 layer

2×2

150

1341

1341

20

20

4 layer

4×4

24

15+20

15

20

2 layer

2×2

150

1341

1341

20

20

4 layer

4×4

25

2×20

2×20

2 layer

2×2

140

1341

1355

15

15

4 layer

4×4

26

2×20

20

20

2 layer

2×2

140

1341

1355

15

15

4 layer

4×4

27

10+20

10

20

2 layer

2×2

140

1141

1218

20

20

4 layer

4×4

28

10+20

10+20

2 layer

2×2

140

1141

1218

20

20

4 layer

4×4

29

10+20

10

20

2 layer

2×2

140

1141

1218

20

20

4 layer

4×4

30

2×15

2×15

2 layer

2×2

140

1371

1341

20

20

4 layer

4×4

31

10

10

2 layer

2×2

140

1141

1218

10+20

10

20

4 layer

4×4

32

15+20

15

20

2 layer

2×2

130

1341

1341

15

15

4 layer

4×4

33

10+15

10+15

2 layer

2×2

130

1141

1218

20

20

4 layer

4×4

34

2×20

2×20

2 layer

2×2

120

1341

1319

10

10

4 layer

4×4

35

10+20

10

20

2 layer

2×2

120

1141

1218

15

15

4 layer

4×4

36

2×10

2×10

2 layer

2×2

120

1141

1218

20

20

4 layer

4×4

37

10+20

10

20

2 layer

2×2

100

1141

1218

10

10

4 layer

4×4

Editor’s note: Tests in Table 8.7.11.3.4.1-1 are covering maximum aggregated bandwidth for each Bandwidth combination set with 3DL CA, which are defined in Table 5.4.2A.1-2 or Table 5.4.2A.1-2a.

Table 8.7.11.3.4.1-2: Test points for sustained data rate (FRC 64QAM)

Maximum supported equivalent aggr. BW

Cat. 9, 10

Cat. 11, 12

DL Cat. 13

DL Cat. 15

DL Cat. 16

DL Cat. 18

DL Cat. 19

Bagg (MHz)

BW combi-nation (MHz)

MIMO layer

DL Cat. 9, 10

DL Cat. 11, 12

FDD CC

TDD CC

240

20

2×20

4

14

3

1

240

2×20

20

4

12

4

2

220

15

2×20

4

14

3

3

220

15+20

20

4

12

4

4

200

20

2

14

5

5

2×20

4

200

20

2

18

6

6

20

20

4

200

20

2

12

7

7

20

20

4

200

20

2

13

8

8

2×20

4

200

10

2×20

4

14

9

9

190

15

2

14

10

10

2×20

4

190

15

2

15

11

11

20

20

4

180

20

2

12

12

12

15

20

4

180

20

2

13

13

13

15+20

4

180

10

2

14

14

14

2×20

4

180

10

2

15

15

15

20

20

4

170

15

2

16

16

16

15

20

4

160

20

20

2

17

17

17

20

4

160

2×20

2

18

18

18

20

4

160

2×20

2

19

19

19

20

4

160

20

20

2

20

20

20

20

4

160

10

2

21

21

21

15+20

4

160

10

2

22

22

22

15

20

4

150

15+20

2

23

23

23

20

4

150

15

20

2

24

24

24

20

4

140

2×20

2

25

25

25

15

4

140

20

20

2

26

26

26

15

4

140

10

20

2

27

27

27

20

4

140

10+20

2

28

28

28

20

4

140

10

20

2

29

29

29

20

4

140

2×15

2

30

30

30

20

4

140

10

2

31

31

31

10

20

4

130

15

20

2

32

32

32

15

4

130

10+15

2

33

33

33

20

4

120

2×20

2

34

34

34

10

4

120

10

20

2

35

35

35

15

4

120

2×10

2

36

36

36

20

4

100

10

20

2

37

37

37

10

4

Note 1: Select the largest equivalent aggregated bandwidth supported by the UE as defined in clause 8.7.11.1. Only one test point to be tested.

Table 8.7.11.3.4.1-3: Test points for sustained data rate (FRC 256QAM)

Maximum supported equivalent aggr. BW

Cat. 9, 10

Cat. 11, 12

DL Cat. 13

DL Cat. 15

DL Cat. 16

DL Cat. 18

DL Cat. 19

Bagg (MHz)

BW combi-nation (MHz)

MIMO layer

DL Cat. 9, 10

DL Cat. 11, 12

FDD CC

TDD CC

240

20

2×20

4

18

3

1

240

2×20

20

4

16

4

2

220

15

2×20

4

21

3

3

220

15+20

20

4

16

4

4

200

20

2

17

5

5

2×20

4

200

20

2

18

6

6

20

20

4

200

20

2

19

7

7

20

20

4

200

20

2

20

8

8

2×20

4

200

10

2×20

4

21

9

9

190

15

2

21

10

10

2×20

4

190

15

2

16

11

11

20

20

4

180

20

2

22

12

12

15

20

4

180

20

2

24

13

13

15+20

4

180

10

2

21

14

14

2×20

4

180

10

2

28

15

15

20

20

4

170

15

2

16

16

16

15

20

4

160

20

20

2

17

17

17

20

4

160

2×20

2

18

18

18

20

4

160

2×20

2

19

19

19

20

4

160

20

20

2

20

20

20

20

4

160

10

2

21

21

21

15+20

4

160

10

2

22

22

22

15

20

4

150

15+20

2

23

23

23

20

4

150

15

20

2

24

24

24

20

4

140

2×20

2

25

25

25

15

4

140

20

20

2

26

26

26

15

4

140

10

20

2

27

27

27

20

4

140

10+20

2

28

28

28

20

4

140

10

20

2

29

29

29

20

4

140

2×15

2

30

30

30

20

4

140

10

2

31

31

31

10

20

4

130

15

20

2

32

32

32

15

4

130

10+15

2

33

33

33

20

4

120

2×20

2

34

34

34

10

4

120

10

20

2

35

35

35

15

4

120

2×10

2

36

36

36

20

4

100

10

20

2

37

37

37

10

4

Note 1: Select the largest equivalent aggregated bandwidth supported by the UE as defined in clause 8.7.11.1. Only one test point to be tested.

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Maximum WGap for Intra-band non-contiguous CA, otherwise Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: according to Table 8.7.11.3.4.1-1 depending on the UE category according to Table 8.7.11.3.4.1-2 for UE not supporting 256QAM or Table 8.7.11.3.4.1-3 for UE supporting 256QAM.

1. Connect the SS to the UE antenna connector(s) as shown in TS 36.508 [7] Annex A, Figure A.91.

2. For UE not supporting 256QAM the parameter settings for the cell are set up according to Table 8.7.11.1-1, Table 8.7.11.3.4.1-1 depending on the UE category according to Table 8.7.11.3.4.1-2. For UE supporting 256QAM the parameter settings for the cell are set up according to Table 8.7.11.1-1, Table 8.7.11.3.4.1-1 depending on the UE category according to Table 8.7.11.3.4.1-3.

3. Downlink signals for PCC are initially set up according to Annex C.0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.

4. Propagation conditions are set according to Annex B.0.

5. Ensure the UE is in State 4A-RF according to TS 36.508 [7] clause 5.2A.3. Message contents are defined in clause 8.7.11.3.4.3.

8.7.11.3.4.2 Test procedure

1. Configure SCCs according to Annex C.0, C.1 and Annex C.3.2 for all downlink physical channels.

2. The SS shall configure SCCs as per TS 36.508 [7] clause 5.2A.4. PhysicalConfigDedicated-DEFAULT is defined in Table 8.7.11.3.4.3-3, PhysicalConfigDedicatedSCell-r10-DEFAULT is defined in Table 8.7.11.3.4.3-4. Cell ID = n (where n is 1, 2) applies to S-Celln (where n is 1, 2).

3. The SS activates SCCs by sending the activation MAC-CE (Refer TS 36.321 [13], clauses 5.13, 6.1.3.8). Wait for at least 2 seconds (Refer TS 36.133, clauses 8.3.3.2).

4. Propagation conditions are set according to Annex B.1 (No external noise sources are applied).

5. For UE not supporting 256QAM the SS looks up TBsize in Annex A.3.9 for the RMCs in accordance with table 8.7.11.1-2, for the tests to be performed depending on the UE category according to Table 8.7.11.3.4.1-2. For UE supporting 256QAM the SS looks up TBsize in Annex A.3.9 for the RMCs in accordance with table 8.7.11.1-3, for the tests to be performed depending on the UE category according to Table 8.7.11.3.4.1-3.

6. The SS sets the counters NDL_newtx, NDL_retx, NUL_PDCP and NDDL_PDCP to 0.

7. For each new DL HARQ transmission the SS generates sufficient PDCP SDUs to fill up the TB (Note 1). The SS ciphers the PDCP SDUs, concatenates the resultant PDCP PDUs to form an RLC PDU and then a MAC PDU. The SS transmits the MAC PDU. The SS increments then NDL_newtx by one and NDL_PDCP by the number of new PDCP SDUs (Note 1) included in the sent MAC PDU.

8. If PHY requests a DL HARQ retransmission, the SS performs a HARQ retransmission and increments NDL_retx by one.

9. Steps 7 to 8 are repeated at every TTI for at least 300 frames and the SS waits for 300ms to let any HARQ retransmissions and RLC retransmissions to finish.

10. For each PDCP SDU received at the SS, if the content of the data matches that of the truncated version of the original PDCP SDU generated at the SS, the SS increments NUL_PDCP by one

11. The SS calculates the TB success rate as A = 100%*NDL_newtx / (NDL_newtx + NDL_retx). Measurements are not based on UE feedback but on SS counters instead (NDL_newtx and NDL_retx) in order to validate HARQ feedback received from the UE.

12. The SS calculates the PDCP SDU loss as B = NDL_PDCP – NUL_PDCP

13. The UE passes the test if A > 85% and B = 0.

NOTE 1: In case of RLC PDU retransmission, the number of new required PDCP SDUs is as many as to fill the rest of TB.

8.7.11.3.4.3 Message contents

Message contents are according to TS 36.508 [7] clauses 5.5 and 4.6 and 4.7A, with the following exceptions:

Table 8.7.11.3.4.3-1: CLOSE UE TEST LOOP (in the preamble)

Derivation Path: 36.509 clause 6.1

Information Element

Value/remark

Comment

Condition

Protocol discriminator

1 1 1 1

Skip indicator

0 0 0 0

Message type

1 0 0 0 0 0 0 0

UE test loop mode

0 0 0 0 0 0 0 0

UE test loop mode A

UE test loop mode A LB setup

Length of UE test loop mode A LB setup list in bytes

0 0 0 0 0 0 1 1

Length of one LB setup DRB (3 bytes)

LB setup DRB

0 0 0 0 0 0 0 0,

0 0 1 0 1 0 0 0,

0 0 0 Q4 Q3 Q2 Q1 Q0

UL PDCP SDU size = 40 bits (5 bytes)

Q4..Q0 = Data Radio Bearer identity number for the default radio bearer. See 36.509 clause 6.1

UE test loop mode B LB setup

Not present

Table 8.7.11.3.4.3-2: SecurityModeCommand (in the preamble)

Derivation Path: TS 36.508 clause 4.6.1 table 4.6.1-19

Information Element

Value/remark

Comment

Condition

SecurityModeCommand ::= SEQUENCE {

criticalExtensions CHOICE {

c1 CHOICE{

securityModeCommand-r8 SEQUENCE {

securityConfiguration SEQUENCE {

cipheringAlgorithm

eea2

nextHopChainingCount

Not present

}

nonCriticalExtension SEQUENCE {}

Not present

}

}

}

}

Table 8.7.11.3.4.3-3: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1, Table 5.5.1.2-1

Information Element

Value/remark

Comment

Condition

PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {

antennaInfo CHOICE {

explicitValue ::= SEQUENCE {

transmissionMode

tm3

Transmission mode 3

codebookSubsetRestriction CHOICE {

n2TxAntenna-tm3

10

2TX

n4TxAntenna-tm3

1000

4TX

}

ue-TransmitAntennaSelection CHOICE {

Release

NULL

}

}

}

}

Condition

Explanation

2TX

2 SS Tx antenna P-Cell

4TX

4 SS Tx antenna P-Cell

Table 8.7.11.3.4.3-4: PhysicalConfigDedicatedSCell-r10-DEFAULT

Derivation Path: 36.508 clause 4.6.3 Table 4.6.3-6A

Information Element

Value/remark

Comment

Condition

PhysicalConfigDedicatedSCell-r10-DEFAULT ::= SEQUENCE {

nonUL-Configuration-r10 SEQUENCE {

antennaInfo-r10 CHOICE {

transmissionMode-r10

tm3

Transmission mode 3

codebookSubsetRestriction-r10

10

2TX

codebookSubsetRestriction-r10

1000

4TX

ue-TransmitAntennaSelection CHOICE {

Release

NULL

}

}

pdsch-ConfigDedicated-r10 CHOICE {

4TX

p-a

dB-6

}

}

}

Condition

Explanation

2TX

2 SS Tx antenna S-Cell

4TX

4 SS Tx antenna S-Cell

8.7.11.3.5 Test requirement

The pass fail decision is as specified in the test procedure in clause 8.7.11.3.4.2.

There are no parameters in the test setup or measurement process whose variation impacts the results so there are no applicable test tolerances for this test.

8.7.11.4 TDD FDD CA sustained data rate performance for 4 layer MIMO (4DL CA)

Editor’s note: Simplification of test point tables, to reduce future maintenance, needs further investigation.

8.7.11.4.1 Test purpose

Same test purpose as 8.7.1.1.

8.7.11.4.2 Test applicability

This test applies to all types of UE Release 12 and forward of DL category 15, 16, 18 and 19 that support E-UTRA FDD and TDD, 4DL TDD-FDD CA and support 4 Rx antenna ports and 4-layer spatial multiplexing for PDSCH transmission mode 3 in any RF band of the 4DL CA configuration.

8.7.11.4.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 8.7.11.1.

8.7.11.4.4 Test description

8.7.11.4.4.1 Initial conditions

For UE not supporting 256QAM, the requirements are specified in Table 8.7.11.1-2, with the addition of the parameters in Table 8.7.11.4.4.1-1. The test points are applied to UE category and bandwidth combination with maximum equivalent aggregated bandwidth as specified in Table 8.7.11.4.4.1-2.

For UE supporting 256QAM, the requirements are specified in Table 8.7.11.1-3, with the addition of the parameters in Table 8.7.11.4.4.1-1. The test points are applied to UE category and bandwidth combination with maximum equivalent aggregated bandwidth as specified in Table 8.7.11.4.4.1-3.

Table 8.7.11.4.4.1-1: Test parameters for sustained downlink data rate (TDD FDD 4DL CA)

Test

Bandwidth (MHz)

MIMO layer

Antenna confi-guration

Equivalent aggr. BW (MHz)

PDCP SDU size [Octets] 64QAM

PDCP SDU size [Octets] 256QAM

Total

FDD CC

TDD CC

1

4×20

2×20

2×20

4 layer

4×4

320

1455

1408

2

4×20

20

3×20

4 layer

4×4

320

1455

1408

3

4×20

3×20

20

4 layer

4×4

320

1455

1408

4

15+20+20+20

15+20

2×20

4 layer

4×4

300

1455

1408

5

15+20+20+20

15+20+20

20

4 layer

4×4

300

1455

1408

6

20

20

2 layer

2×2

280

1341

1355

3×20

20

2×20

4 layer

4×4

7

20

20

2 layer

2×2

280

1341

1355

3×20

20

2×20

4 layer

4×4

8

20

20

2 layer

2×2

280

1341

1355

3×20

3×20

4 layer

4×4

9

20

20

2 layer

2×2

280

1341

1355

3×20

3×20

4 layer

4×4

10

20

20

2 layer

2×2

280

1341

1355

3×20

2×20

20

4 layer

4×4

11

15

15

2 layer

2×2

270

1371

1341

3×20

20

2×20

4 layer

4×4

12

15

15

2 layer

2×2

270

1371

1341

3×20

2×20

20

4 layer

4×4

13

20

20

2 layer

2×2

260

1341

1355

15+20+20

15

2×20

4 layer

4×4

14

20

20

2 layer

2×2

260

1341

1355

15+20+20

15+20+20

4 layer

4×4

15

20

20

2 layer

2×2

260

1341

1355

15+20+20

15+20

20

4 layer

4×4

16

10

10

2 layer

2×2

260

1141

1218

3×20

3×20

4 layer

4×4

17

10

10

2 layer

2×2

260

1141

1218

3×20

2×20

20

4 layer

4×4

18

10

10

2 layer

2×2

260

1141

1218

3×20

20

2×20

4 layer

4×4

19

15

15

2 layer

2×2

250

1371

1341

15+20+20

15

2×20

4 layer

4×4

20

15

15

2 layer

2×2

250

1371

1341

15+20+20

15+20

20

4 layer

4×4

21

2×20

2×20

2 layer

2×2

240

1341

1355

2×20

2×20

4 layer

4×4

22

2×20

2×20

2 layer

2×2

240

1341

1355

2×20

2×20

4 layer

4×4

23

2×20

20

20

2 layer

2×2

240

1341

1355

2×20

2×20

4 layer

4×4

24

2×20

2×20

2 layer

2×2

240

1341

1355

2×20

20

20

4 layer

4×4

25

2×20

2×20

2 layer

2×2

240

1341

1355

2×20

20

20

4 layer

4×4

26

2×20

20

20

2 layer

2×2

240

1341

1355

2×20

2×20

4 layer

4×4

27

10

10

2 layer

2×2

240

1141

1218

15+20+20

15

2×20

4 layer

4×4

28

10

10

2 layer

2×2

240

1141

1218

15+20+20

15+20

20

4 layer

4×4

29

15+20

15+20

2 layer

2×2

230

1341

1341

2×20

2×20

4 layer

4×4

30

15+20

15+20

2 layer

2×2

230

1341

1341

2×20

20

20

4 layer

4×4

31

15+20

15

20

2 layer

2×2

230

1341

1341

2×20

20+20

4 layer

4×4

32

2×20

2×20

2 layer

2×2

220

1341

1355

15+20

15+20

4 layer

4×4

33

2×20

2×20

2 layer

2×2

220

1341

1355

15+20

15

20

4 layer

4×4

34

2×20

20

20

2 layer

2×2

220

1341

1355

15+20

15+20

4 layer

4×4

35

2×15

2×15

2 layer

2×2

220

1371

1341

2×20

2×20

4 layer

4×4

36

10+20

10

20

2 layer

2×2

220

1141

1218

2×20

2×20

4 layer

4×4

37

10+20

10

20

2 layer

2×2

220

1141

1218

2×20

2×20

4 layer

4×4

38

10+20

10+20

2 layer

2×2

220

1141

1218

2×20

20

20

4 layer

4×4

39

2×15

2×15

2 layer

2×2

220

1371

1341

2×20

20

20

4 layer

4×4

40

10+20

10

20

2 layer

2×2

220

1141

1218

2×20

20

20

4 layer

4×4

41

10+20

10+20

2 layer

2×2

220

1141

1218

2×20

2×20

4 layer

4×4

42

15+20

15

20

2 layer

2×2

210

1341

1341

15+20

15+20

4 layer

4×4

43

15+20

15+20

2 layer

2×2

210

1341

1341

15+20

15

20

4 layer

4×4

44

10+15

10+15

2 layer

2×2

210

1141

1218

2×20

2×20

4 layer

4×4

45

10+15

10+15

2 layer

2×2

210

1141

1218

2×20

20

20

4 layer

4×4

46

3×20

20

2×20

2 layer

2×2

200

1341

1355

20

20

4 layer

4×4

47

3×20

20

2×20

2 layer

2×2

200

1341

1355

20

20

4 layer

4×4

48

3×20

3×20

2 layer

2×2

200

1341

1355

20

20

4 layer

4×4

49

3×20

3×20

2 layer

2×2

200

1341

1355

20

20

4 layer

4×4

50

3×20

2×20

20

2 layer

2×2

200

1341

1355

20

20

4 layer

4×4

51

10+20

10

20

2 layer

2×2

200

1141

1218

15+20

15+20

4 layer

4×4

52

10+20

10+20

2 layer

2×2

200

1141

1218

15+20

15

20

4 layer

4×4

53

2×10

2×10

2 layer

2×2

200

1141

1218

2×20

2×20

4 layer

4×4

54

15+20+20

15

2×20

2 layer

2×2

190

1341

1341

20

20

4 layer

4×4

55

15+20+20

15+20+20

2 layer

2×2

190

1341

1341

20

20

4 layer

4×4

56

15+20+20

15+20

20

2 layer

2×2

190

1341

1341

20

20

4 layer

4×4

57

3×20

3×20

2 layer

2×2

180

1341

1355

15

15

4 layer

4×4

58

3×20

20

2×20

2 layer

2×2

180

1341

1355

15

15

4 layer

4×4

59

3×20

2×20

20

2 layer

2×2

180

1341

1355

15

15

4 layer

4×4

60

10+20+20

10

2×20

2 layer

2×2

180

1141

1218

20

20

4 layer

4×4

61

10+20+20

10+20+20

2 layer

2×2

180

1141

1218

20

20

4 layer

4×4

62

10+20+20

10+20

20

2 layer

2×2

180

1141

1218

20

20

4 layer

4×4

63

15+15+20

15+15+20

2 layer

2×2

180

1341

1341

20

20

4 layer

4×4

64

15+15+20

15+15

20

2 layer

2×2

180

1341

1341

20

20

4 layer

4×4

65

10+20+20

10+20

20

2 layer

2×2

180

1141

1218

20

20

4 layer

4×4

66

10+20+20

10

2×20

2 layer

2×2

180

1141

1218

20

20

4 layer

4×4

67

2×10

2×10

2 layer

2×2

180

1141

1218

15+20

15+20

4 layer

4×4

68

15+20+20

15

2×20

2 layer

2×2

170

1341

1341

15

15

4 layer

4×4

69

15+20+20

15+20

20

2 layer

2×2

170

1341

1341

15

15

4 layer

4×4

70

10+15+20

10+15+20

2 layer

2×2

170

1141

1218

20

20

4 layer

4×4

71

10+15+20

10+15

20

2 layer

2×2

170

1141

1218

20

20

4 layer

4×4

72

10+20+20

10

2×20

2 layer

2×2

160

1141

1218

15

15

4 layer

4×4

73

10+20+20

10+20

20

2 layer

2×2

160

1141

1218

15

15

4 layer

4×4

Editor’s note: Tests in Table 8.7.11.4.4.1-1 are covering maximum aggregated bandwidth for each Bandwidth combination set with 4DL CA, which are defined in Table 5.4.2A.1-2, Table 5.4.2A.1-2a and Table 5.4.2A.1-2b.

Table 8.7.11.4.4.1-2: Test points for sustained data rate (FRC 64QAM)

Maximum supported equivalent aggr. BW

Cat. 9, 10

Cat. 11, 12

DL Cat. 13

DL Cat. 15

DL Cat. 16

DL Cat. 18

DL Cat. 19

Bagg (MHz)

BW combi-nation (MHz)

MIMO layer

DL Cat. 9, 10

DL Cat. 11, 12

FDD CC

TDD CC

320

2×20

2×20

4

32

4

1

320

20

3×20

4

36

7

2

320

3×20

20

4

33

5

3

300

15+20

2×20

4

32

4

4

300

15+20+20

20

4

33

5

5

280

20

2

41

6

6

20

2×20

4

280

20

2

47

7

7

20

2×20

4

280

20

2

36

8

8

3×20

4

280

20

2

34

9

9

3×20

4

280

20

2

38

10

10

2×20

20

4

270

15

2

41

11

11

20

2×20

4

270

15

2

38

12

12

2×20

20

4

260

20

2

35

13

13

15

2×20

4

260

20

2

34

14

14

15+20+20

4

260

20

2

33

15

15

15+20

20

4

260

10

2

36

16

16

3×20

4

260

10

2

38

17

17

2×20

20

4

260

10

2

41

18

18

20

2×20

4

250

15

2

44

19

19

15

2×20

4

250

15

2

39

20

20

15+20

20

4

240

2×20

2

41

21

21

2×20

4

240

2×20

2

32

22

22

2×20

4

240

20

20

2

36

23

23

2×20

4

240

2×20

2

47

24

24

20

20

4

240

2×20

2

38

25

25

20

20

4

240

20

20

2

37

26

26

2×20

4

240

10

2

44

27

27

15

2×20

4

240

10

2

45

28

28

15+20

20

4

230

15+20

2

41

29

29

2×20

4

230

15+20

2

38

30

30

20

20

4

230

15

20

2

37

31

31

20+20

4

220

2×20

2

32

32

32

15+20

4

220

2×20

2

33

33

33

15

20

4

220

20

20

2

34

34

34

15+20

4

220

2×15

2

35

35

35

2×20

4

220

10

20

2

36

36

36

2×20

4

220

10

20

2

37

37

37

2×20

4

220

10+20

2

38

38

38

20

20

4

220

2×15

2

39

39

39

20

20

4

220

10

20

2

40

40

40

20

20

4

220

10+20

2

41

41

41

2×20

4

210

15

20

2

42

42

42

15+20

4

210

15+20

2

43

43

43

15

20

4

210

10+15

2

44

44

44

2×20

4

210

10+15

2

45

45

45

20

20

4

200

20

2×20

2

46

46

46

20

4

200

20

2×20

2

47

47

47

20

4

200

3×20

2

48

48

48

20

4

200

3×20

2

49

49

49

20

4

200

2×20

20

2

50

50

50

20

4

200

10

20

2

51

51

51

15+20

4

200

10+20

2

52

52

52

15

20

4

200

2×10

2

53

53

53

2×20

4

190

15

2×20

2

54

54

54

20

4

190

15+20+20

2

55

55

55

20

4

190

15+20

20

2

56

56

56

20

4

180

3×20

2

57

57

57

15

4

180

20

2×20

2

58

58

58

15

4

180

2×20

20

2

59

59

59

15

4

180

10

2×20

2

60

60

60

20

4

180

10+20+20

2

61

61

61

20

4

180

10+20

20

2

62

62

62

20

4

180

15+15+20

2

63

63

63

20

4

180

15+15

20

2

64

64

64

20

4

180

10+20

20

2

65

65

65

20

4

180

10

2×20

2

66

66

66

20

4

180

2×10

2

67

67

67

15+20

4

170

15

2×20

2

68

68

68

15

4

170

15+20

20

2

69

69

69

15

4

170

10+15+20

2

70

70

70

20

4

170

10+15

20

2

71

71

71

20

4

160

10

2×20

2

72

72

72

15

4

160

10+20

20

2

73

73

73

15

4

Note 1: Select the largest equivalent aggregated bandwidth supported by the UE as defined in clause 8.7.11.1. Only one test point to be tested.

Table 8.7.11.4.4.1-3: Test points for sustained data rate (FRC 256QAM)

Maximum supported equivalent aggr. BW

Cat. 9, 10

Cat. 11, 12

DL Cat. 13

DL Cat. 15

DL Cat. 16

DL Cat. 18

DL Cat. 19

Bagg (MHz)

BW combi-nation (MHz)

MIMO layer

DL Cat. 9, 10

DL Cat. 11, 12

FDD CC

TDD CC

320

2×20

2×20

4

40

11

1

320

20

3×20

4

36

16

2

320

3×20

20

4

37

12

3

300

15+20

2×20

4

54

11

4

300

15+20+20

20

4

37

12

5

280

20

2

40

11

6

20

2×20

4

280

20

2

36

23

7

20

2×20

4

280

20

2

36

16

8

3×20

4

280

20

2

37

14

9

3×20

4

280

20

2

37

12

10

2×20

20

4

270

15

2

41

11

11

20

2×20

4

270

15

2

37

12

12

2×20

20

4

260

20

2

41

13

13

15

2×20

4

260

20

2

37

14

14

15+20+20

4

260

20

2

38

15

15

15+20

20

4

260

10

2

36

16

16

3×20

4

260

10

2

38

17

17

2×20

20

4

260

10

2

41

18

18

20

2×20

4

250

15

2

44

19

19

15

2×20

4

250

15

2

42

20

20

15+20

20

4

240

2×20

2

44

21

21

2×20

4

240

2×20

2

46

22

22

2×20

4

240

20

20

2

36

23

23

2×20

4

240

2×20

2

47

24

24

20

20

4

240

2×20

2

38

25

25

20

20

4

240

20

20

2

37

26

26

2×20

4

240

10

2

44

27

27

15

2×20

4

240

10

2

45

28

28

15+20

20

4

230

15+20

2

44

29

29

2×20

4

230

15+20

2

38

30

30

20

20

4

230

15

20

2

37

31

31

20+20

4

220

2×20

2

54

32

32

15+20

4

220

2×20

2

55

33

33

15

20

4

220

20

20

2

56

34

34

15+20

4

220

2×15

2

44

35

35

2×20

4

220

10

20

2

36

36

36

2×20

4

220

10

20

2

37

37

37

2×20

4

220

10+20

2

38

38

38

20

20

4

220

2×15

2

45

39

39

20

20

4

220

10

20

2

40

40

40

20

20

4

220

10+20

2

41

41

41

2×20

4

210

15

20

2

42

42

42

15+20

4

210

15+20

2

43

43

43

15

20

4

210

10+15

2

44

44

44

2×20

4

210

10+15

2

45

45

45

20

20

4

200

20

2×20

2

46

46

46

20

4

200

20

2×20

2

47

47

47

20

4

200

3×20

2

48

48

48

20

4

200

3×20

2

49

49

49

20

4

200

2×20

20

2

50

50

50

20

4

200

10

20

2

51

51

51

15+20

4

200

10+20

2

52

52

52

15

20

4

200

2×10

2

53

53

53

2×20

4

190

15

2×20

2

54

54

54

20

4

190

15+20+20

2

55

55

55

20

4

190

15+20

20

2

56

56

56

20

4

180

3×20

2

57

57

57

15

4

180

20

2×20

2

58

58

58

15

4

180

2×20

20

2

59

59

59

15

4

180

10

2×20

2

60

60

60

20

4

180

10+20+20

2

61

61

61

20

4

180

10+20

20

2

62

62

62

20

4

180

15+15+20

2

63

63

63

20

4

180

15+15

20

2

64

64

64

20

4

180

10+20

20

2

65

65

65

20

4

180

10

2×20

2

66

66

66

20

4

180

2×10

2

67

67

67

15+20

4

170

15

2×20

2

68

68

68

15

4

170

15+20

20

2

69

69

69

15

4

170

10+15+20

2

70

70

70

20

4

170

10+15

20

2

71

71

71

20

4

160

10

2×20

2

72

72

72

15

4

160

10+20

20

2

73

73

73

15

4

Note 1: Select the largest equivalent aggregated bandwidth supported by the UE as defined in clause 8.7.11.1. Only one test point to be tested.

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Maximum WGap for Intra-band non-contiguous CA, otherwise Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: according to Table 8.7.11.4.4.1-1 depending on the UE category according to Table 8.7.11.4.4.1-2 for UE not supporting 256QAM or Table 8.7.11.4.4.1-3 for UE supporting 256QAM.

1. Connect the SS to the UE antenna connector(s) as shown in TS 36.508 [7] Annex A, Figure A.91.

2. For UE not supporting 256QAM the parameter settings for the cell are set up according to Table 8.7.11.1-1, Table 8.7.11.4.4.1-1 depending on the UE category according to Table 8.7.11.4.4.1-2. For UE supporting 256QAM the parameter settings for the cell are set up according to Table 8.7.11.1-1, Table 8.7.11.4.4.1-1 depending on the UE category according to Table 8.7.11.4.4.1-3.

3. Downlink signals for PCC are initially set up according to Annex C.0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.

4. Propagation conditions are set according to Annex B.0.

5. Ensure the UE is in State 4A-RF according to TS 36.508 [7] clause 5.2A.3. Message contents are defined in clause 8.7.11.4.4.3.

8.7.11.4.4.2 Test procedure

1. Configure SCCs according to Annex C.0, C.1 and Annex C.3.2 for all downlink physical channels.

2. The SS shall configure SCCs as per TS 36.508 [7] clause 5.2A.4. PhysicalConfigDedicated-DEFAULT is defined in Table 8.7.11.4.4.3-3, PhysicalConfigDedicatedSCell-r10-DEFAULT is defined in Table 8.7.11.4.4.3-4. Cell ID = n (where n is 1, 2, 3) applies to S-Celln (where n is 1, 2, 3).

3. The SS activates SCCs by sending the activation MAC-CE (Refer TS 36.321 [13], clauses 5.13, 6.1.3.8). Wait for at least 2 seconds (Refer TS 36.133, clauses 8.3.3.2).

4. Propagation conditions are set according to Annex B.1 (No external noise sources are applied).

5. For UE not supporting 256QAM the SS looks up TBsize in Annex A.3.9 for the RMCs in accordance with Table 8.7.11.1-2, for the tests to be performed depending on the UE category according to Table 8.7.11.4.4.1-2. For UE supporting 256QAM the SS looks up TBsize in Annex A.3.9 for the RMCs in accordance with Table 8.7.11.1-3, for the tests to be performed depending on the UE category according to Table 8.7.11.4.4.1-3.

6. The SS sets the counters NDL_newtx, NDL_retx, NUL_PDCP and NDDL_PDCP to 0.

7. For each new DL HARQ transmission the SS generates sufficient PDCP SDUs to fill up the TB. The SS ciphers the PDCP SDUs, concatenates the resultant PDCP PDUs to form an RLC PDU and then a MAC PDU. The SS transmits the MAC PDU. The SS increments then NDL_newtx by one and NDL_PDCP by the number of new PDCP SDUs (Note 1) included in the sent MAC PDU.

8. If PHY requests a DL HARQ retransmission, the SS performs a HARQ retransmission and increments NDL_retx by one.

9. Steps 7 to 8 are repeated at every TTI for at least 300 frames and the SS waits for 300ms to let any HARQ retransmissions and RLC retransmissions to finish.

10. For each PDCP SDU received at the SS, if the content of the data matches that of the truncated version of the original PDCP SDU generated at the SS, the SS increments NUL_PDCP by one

11. The SS calculates the TB success rate as A = 100%*NDL_newtx / (NDL_newtx + NDL_retx). Measurements are not based on UE feedback but on SS counters instead (NDL_newtx and NDL_retx) in order to validate HARQ feedback received from the UE.

12. The SS calculates the PDCP SDU loss as B = NDL_PDCP – NUL_PDCP

13. The UE passes the test if A > 85% and B = 0.

NOTE 1: In case of RLC PDU retransmission, the number of new required PDCP SDUs is as many as to fill the rest of TB.

8.7.11.4.4.3 Message contents

Message contents are according to TS 36.508 [7] clauses 5.5 and 4.6 and 4.7A, with the following exceptions:

Table 8.7.11.4.4.3-1: CLOSE UE TEST LOOP (in the preamble)

Derivation Path: 36.509 clause 6.1

Information Element

Value/remark

Comment

Condition

Protocol discriminator

1 1 1 1

Skip indicator

0 0 0 0

Message type

1 0 0 0 0 0 0 0

UE test loop mode

0 0 0 0 0 0 0 0

UE test loop mode A

UE test loop mode A LB setup

Length of UE test loop mode A LB setup list in bytes

0 0 0 0 0 0 1 1

Length of one LB setup DRB (3 bytes)

LB setup DRB

0 0 0 0 0 0 0 0,

0 0 1 0 1 0 0 0,

0 0 0 Q4 Q3 Q2 Q1 Q0

UL PDCP SDU size = 40 bits (5 bytes)

Q4..Q0 = Data Radio Bearer identity number for the default radio bearer. See 36.509 clause 6.1

UE test loop mode B LB setup

Not present

Table 8.7.11.4.4.3-2: SecurityModeCommand (in the preamble)

Derivation Path: TS 36.508 clause 4.6.1 table 4.6.1-19

Information Element

Value/remark

Comment

Condition

SecurityModeCommand ::= SEQUENCE {

criticalExtensions CHOICE {

c1 CHOICE{

securityModeCommand-r8 SEQUENCE {

securityConfiguration SEQUENCE {

cipheringAlgorithm

eea2

nextHopChainingCount

Not present

}

nonCriticalExtension SEQUENCE {}

Not present

}

}

}

}

Table 8.7.11.4.4.3-3: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1, Table 5.5.1.2-1

Information Element

Value/remark

Comment

Condition

PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {

antennaInfo CHOICE {

explicitValue ::= SEQUENCE {

transmissionMode

tm3

Transmission mode 3

codebookSubsetRestriction CHOICE {

n2TxAntenna-tm3

10

2TX

n4TxAntenna-tm3

1000

4TX

}

ue-TransmitAntennaSelection CHOICE {

Release

NULL

}

}

}

}

Condition

Explanation

2TX

2 SS Tx antenna P-Cell

4TX

4 SS Tx antenna P-Cell

Table 8.7.11.4.4.3-4: PhysicalConfigDedicatedSCell-r10-DEFAULT

Derivation Path: 36.508 clause 4.6.3 Table 4.6.3-6A

Information Element

Value/remark

Comment

Condition

PhysicalConfigDedicatedSCell-r10-DEFAULT ::= SEQUENCE {

nonUL-Configuration-r10 SEQUENCE {

antennaInfo-r10 CHOICE {

transmissionMode-r10

tm3

Transmission mode 3

codebookSubsetRestriction-r10

10

2TX

codebookSubsetRestriction-r10

1000

4TX

ue-TransmitAntennaSelection CHOICE {

Release

NULL

}

}

pdsch-ConfigDedicated-r10 CHOICE {

4TX

p-a

dB-6

}

}

}

Condition

Explanation

2TX

2 SS Tx antenna S-Cell

4TX

4 SS Tx antenna S-Cell

8.7.11.4.5 Test requirement

The pass fail decision is as specified in the test procedure in clause 8.7.11.4.4.2.

There are no parameters in the test setup or measurement process whose variation impacts the results so there are no applicable test tolerances for this test.

8.7.11.5 TDD FDD CA sustained data rate performance for 4 layer MIMO (5DL CA)

Editor’s note: Simplification of test point tables, to reduce future maintenance, needs further investigation.

8.7.11.5.1 Test purpose

Same test purpose as 8.7.1.1.

8.7.11.5.2 Test applicability

This test applies to all types of UE Release 12 and forward of DL category 16, 18 and 19 that support E-UTRA FDD and TDD, 5DL TDD-FDD CA and support 4 Rx antenna ports and 4-layer spatial multiplexing for PDSCH transmission mode 3 in any RF band of the 5DL CA configuration.

8.7.11.5.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 8.7.11.1.

8.7.11.5.4 Test description

8.7.11.5.4.1 Initial conditions

For UE not supporting 256QAM, the requirements are specified in Table 8.7.11.1-2, with the addition of the parameters in Table 8.7.11.5.4.1-1. The test points are applied to UE category and bandwidth combination with maximum equivalent aggregated bandwidth as specified in Table 8.7.11.5.4.1-2.

For UE supporting 256QAM, the requirements are specified in Table 8.7.11.1-3, with the addition of the parameters in Table 8.7.11.5.4.1-1. The test points are applied to UE category and bandwidth combination with maximum equivalent aggregated bandwidth as specified in Table 8.7.11.5.4.1-3.

Table 8.7.11.5.4.1-1: Test parameters for sustained downlink data rate (TDD FDD 5DL CA)

Test

Bandwidth (MHz)

MIMO layer

Antenna configuration

Equivalent aggr. BW (MHz)

PDCP SDU size [Octets] 64QAM

PDCP SDU size [Octets] 256QAM

Total

FDD CC

TDD CC

1

5×20

2×20

3×20

4 layer

4×4

400

1455

1408

2

5×20

3×20

2×20

4 layer

4×4

400

1455

1408

3

5×20

20

4×20

4 layer

4×4

400

1455

1408

4

5×20

4×20

20

4 layer

4×4

400

1455

1408

5

15+(4×20)

15+20+20

2×20

4 layer

4×4

380

1455

1408

6

20

20

2 layer

2×2

360

1341

1355

4×20

2×20

2×20

4 layer

4×4

7

20

20

2 layer

2×2

360

1341

1355

4×20

4×20

4 layer

4×4

8

20

20

2 layer

2×2

360

1341

1355

4×20

3×20

20

4 layer

4×4

9

20

20

2 layer

2×2

360

1341

1355

4×20

4×20

4 layer

4×4

10

15

15

2 layer

2×2

350

1371

1341

4×20

2×20

2×20

4 layer

4×4

11

20

20

2 layer

2×2

340

1341

1355

15+(3×20)

15+20

2×20

4 layer

4×4

12

10

10

2 layer

2×2

340

1141

1218

4×20

4×20

4 layer

4×4

13

10

10

2 layer

2×2

340

1141

1218

4×20

2×20

2×20

4 layer

4×4

14

10

10

2 layer

2×2

340

1141

1218

4×20

20

3×20

4 layer

4×4

15

15

15

2 layer

2×2

330

1371

1341

15+(3×20)

15+20

2×20

4 layer

4×4

16

2×20

2×20

2 layer

2×2

320

1341

1355

3×20

3×20

4 layer

4×4

17

2×20

2×20

2 layer

2×2

320

1341

1355

3×20

20

2×20

4 layer

4×4

18

2×20

2×20

2 layer

2×2

320

1341

1355

3×20

3×20

4 layer

4×4

19

2×20

2×20

2 layer

2×2

320

1341

1355

3×20

20

2×20

4 layer

4×4

20

2×20

2×20

2 layer

2×2

320

1341

1355

3×20

2×20

20

4 layer

4×4

21

2×20

20

20

2 layer

2×2

320

1341

1355

3×20

3×20

4 layer

4×4

22

10

10

2 layer

2×2

320

1141

1218

15+(3×20)

15+20

2×20

4 layer

4×4

23

15+20

15+20

2 layer

2×2

310

1341

1341

3×20

20

2×20

4 layer

4×4

24

2×20

2×20

2 layer

2×2

300

1341

1355

15+20+20

15+20+20

4 layer

4×4

25

2×20

2×20

2 layer

2×2

300

1341

1355

15+20+20

15

2×20

4 layer

4×4

26

10+20

10+20

2 layer

2×2

300

1141

1218

3×20

20

2×20

4 layer

4×4

27

2×15

2×15

2 layer

2×2

300

1371

1341

3×20

20

2×20

4 layer

4×4

28

10+20

10+20

2 layer

2×2

300

1141

1218

3×20

3×20

4 layer

4×4

29

10+20

10

20

2 layer

2×2

300

1141

1218

3×20

20

2×20

4 layer

4×4

30

15+20

15+20

2 layer

2×2

290

1341

1341

15+20+20

15

2×20

4 layer

4×4

31

10+15

10+15

2 layer

2×2

290

1141

1218

3×20

20

2×20

4 layer

4×4

32

3×20

3×20

2 layer

2×2

280

1341

1355

2×20

2×20

4 layer

4×4

33

3×20

20

2×20

2 layer

2×2

280

1341

1355

2×20

2×20

4 layer

4×4

34

3×20

3×20

2 layer

2×2

280

1341

1355

2×20

2×20

4 layer

4×4

35

3×20

20

2×20

2 layer

2×2

280

1341

1355

2×20

2×20

4 layer

4×4

36

3×20

3×20

2 layer

2×2

280

1341

1355

2×20

20

20

4 layer

4×4

37

3×20

2×20

20

2 layer

2×2

280

1341

1355

2×20

2×20

4 layer

4×4

38

10+20

10+20

2 layer

2×2

280

1141

1218

15+20+20

15

2×20

4 layer

4×4

39

2×10

2×10

2 layer

2×2

280

1141

1218

3×20

3×20

4 layer

4×4

40

15+20+20

15

2×20

2 layer

2×2

270

1341

1341

2×20

2×20

4 layer

4×4

41

15+20+20

15+20+20

2 layer

2×2

270

1341

1341

2×20

2×20

4 layer

4×4

42

3×20

20

2×20

2 layer

2×2

260

1341

1355

15+20

15+20

4 layer

4×4

43

10+20+20

10

2×20

2 layer

2×2

260

1141

1218

2×20

2×20

4 layer

4×4

44

10+20+20

10

2×20

2 layer

2×2

260

1141

1218

2×20

2×20

4 layer

4×4

45

10+20+20

10+20+20

2 layer

2×2

260

1141

1218

2×20

2×20

4 layer

4×4

46

15+15+20

15+15+20

2 layer

2×2

260

1341

1341

2×20

2×20

4 layer

4×4

47

10+20+20

10

2×20

2 layer

2×2

260

1141

1218

2×20

20

20

4 layer

4×4

48

10+20+20

10+20

20

2 layer

2×2

260

1141

1218

2×20

2×20

4 layer

4×4

49

15+20+20

15

2×20

2 layer

2×2

250

1341

1341

15+20

15+20

4 layer

4×4

50

10+15+20

10+15+20

2 layer

2×2

250

1141

1218

2×20

2×20

4 layer

4×4

51

4×20

2×20

2×20

2 layer

2×2

240

1341

1355

20

20

4 layer

4×4

52

4×20

4×20

2 layer

2×2

240

1341

1355

20

20

4 layer

4×4

53

4×20

4×20

2 layer

2×2

240

1341

1355

20

20

4 layer

4×4

54

4×20

3×20

20

2 layer

2×2

240

1341

1355

20

20

4 layer

4×4

55

10+20+20

10

2×20

2 layer

2×2

240

1141

1218

15+20

15+20

4 layer

4×4

56

10+10+20

2×10

20

2 layer

2×2

240

1141

1218

2×20

2×20

4 layer

4×4

57

15+(3×20)

15+20

2×20

2 layer

2×2

230

1341

1341

20

20

4 layer

4×4

58

4×20

4×20

2 layer

2×2

220

1341

1355

15

15

4 layer

4×4

59

4×20

2×20

2×20

2 layer

2×2

220

1341

1355

15

15

4 layer

4×4

60

10+(3×20)

10+20

2×20

2 layer

2×2

220

1141

1218

20

20

4 layer

4×4

61

15+15+20+20

2×15

2×20

2 layer

2×2

220

1341

1341

20

20

4 layer

4×4

62

10+(3×20)

10

3×20

2 layer

2×2

220

1141

1218

20

20

4 layer

4×4

63

10+(3×20)

10+20

2×20

2 layer

2×2

220

1141

1218

20

20

4 layer

4×4

64

15+(3×20)

15+20

2×20

2 layer

2×2

210

1341

1341

15

15

4 layer

4×4

65

10+15+20+20

10+15

2×20

2 layer

2×2

210

1141

1218

20

20

4 layer

4×4

66

10+(3×20)

10+20

2×20

2 layer

2×2

200

1141

1218

15

15

4 layer

4×4

Editor’s note: Tests in Table 8.7.11.5.4.1-1 are covering maximum aggregated bandwidth for each Bandwidth combination set with 5DL CA which are defined in Table 5.4.2A.1-2, Table 5.4.2A.1-2a, Table 5.4.2A.1-2b and Table 5.4.2A.1-2c.

Table 8.7.11.5.4.1-2: Test points for sustained data rate (FRC 64QAM)

Maximum supported equivalent aggr. BW

Cat. 9, 10

Cat. 11, 12

DL Cat. 13

DL Cat. 15

DL Cat. 16

DL Cat. 18

DL Cat. 19

Bagg (MHz)

BW combi-nation (MHz)

MIMO layer

DL Cat. 9, 10

DL Cat. 11, 12

FDD CC

TDD CC

400

2×20

3×20

4

32

16

1

400

3×20

2×20

4

34

17

2

400

20

4×20

4

35

19

3

400

4×20

20

4

36

20

4

380

15+20+20

2×20

4

41

10

5

360

20

2

34

17

6

2×20

2×20

4

360

20

2

35

35

7

4×20

4

360

20

2

36

20

8

3×20

20

4

360

20

2

37

21

9

4×20

4

350

15

2

41

10

10

2×20

2×20

4

340

20

2

41

11

11

15+20

2×20

4

340

10

2

43

12

12

4×20

4

340

10

2

45

13

13

2×20

2×20

4

340

10

2

47

14

14

20

3×20

4

330

15

2

46

15

15

15+20

2×20

4

320

2×20

2

39

16

16

3×20

4

320

2×20

2

34

17

17

20

2×20

4

320

2×20

2

33

18

18

3×20

4

320

2×20

2

35

19

19

20

2×20

4

320

2×20

2

36

20

20

2×20

20

4

320

20

20

2

37

21

21

3×20

4

320

10

2

31

22

22

15+20

2×20

4

310

15+20

2

41

23

23

20

2×20

4

300

2×20

2

40

24

24

15+20+20

4

300

2×20

2

41

25

25

15

2×20

4

300

10+20

2

45

26

26

20

2×20

4

300

2×15

2

46

27

27

20

2×20

4

300

10+20

2

48

28

28

3×20

4

300

10

20

2

47

29

29

20

2×20

4

290

15+20

2

30

30

30

15

2×20

4

290

10+15

2

31

31

31

20

2×20

4

280

3×20

2

32

32

32

2×20

4

280

20

2×20

2

33

33

33

2×20

4

280

3×20

2

34

34

34

2×20

4

280

20

2×20

2

35

35

35

2×20

4

280

3×20

2

36

36

36

20

20

4

280

2×20

20

2

37

37

37

2×20

4

280

10+20

2

38

38

38

15

2×20

4

280

2×10

2

39

39

39

3×20

4

270

15

2×20

2

40

40

40

2×20

4

270

15+20+20

2

41

41

41

2×20

4

260

20

2×20

2

42

42

42

15+20

4

260

10

2×20

2

43

43

43

2×20

4

260

10

2×20

2

44

44

44

2×20

4

260

10+20+20

2

45

45

45

2×20

4

260

15+15+20

2

46

46

46

2×20

4

260

10

2×20

2

47

47

47

20

20

4

260

10+20

20

2

48

48

48

2×20

4

250

15

2×20

2

49

49

49

15+20

4

250

10+15+20

2

50

50

50

2×20

4

240

2×20

2×20

2

51

51

51

20

4

240

4×20

2

52

52

52

20

4

240

4×20

2

53

53

53

20

4

240

3×20

20

2

54

54

54

20

4

240

10

2×20

2

55

55

55

15+20

4

240

2×10

20

2

56

56

56

2×20

4

230

15+20

2×20

2

57

57

57

20

4

220

4×20

2

58

58

58

15

4

220

2×20

2×20

2

59

59

59

15

4

220

10+20

2×20

2

60

60

60

20

4

220

2×15

2×20

2

61

61

61

20

4

220

10

3×20

2

62

62

62

20

4

220

10+20

2×20

2

63

63

63

20

4

210

15+20

2×20

2

64

64

64

15

4

210

10+15

2×20

2

65

65

65

20

4

200

10+20

2×20

2

66

66

66

15

4

Note 1: Select the largest equivalent aggregated bandwidth supported by the UE as defined in clause 8.7.11.1. Only one test point to be tested.

Table 8.7.11.5.4.1-3: Test points for sustained data rate (FRC 256QAM)

Maximum supported equivalent aggr. BW

Cat. 9, 10

Cat. 11, 12

DL Cat. 13

DL Cat. 15

DL Cat. 16

DL Cat. 18

DL Cat. 19

Bagg (MHz)

BW combi-nation (MHz)

MIMO layer

DL Cat. 9, 10

DL Cat. 11, 12

FDD CC

TDD CC

400

2×20

3×20

4

47

16

400

3×20

2×20

4

51

6

400

20

4×20

4

52

7

400

4×20

20

4

53

8

380

15+20+20

2×20

4

57

10

360

20

2

51

6

2×20

2×20

4

360

20

2

43

7

4×20

4

360

20

2

53

8

3×20

20

4

360

20

2

54

9

4×20

4

350

15

2

57

10

2×20

2×20

4

340

20

2

57

11

15+20

2×20

4

340

10

2

43

12

4×20

4

340

10

2

44

13

2×20

2×20

4

340

10

2

47

14

20

3×20

4

330

15

2

61

15

15+20

2×20

4

320

2×20

2

47

16

3×20

4

320

2×20

2

51

17

20

2×20

4

320

2×20

2

51

18

3×20

4

320

2×20

2

52

19

20

2×20

4

320

2×20

2

53

20

2×20

20

4

320

20

20

2

54

21

3×20

4

320

10

2

50

22

15+20

2×20

4

310

15+20

2

57

23

20

2×20

4

300

2×20

2

57

24

15+20+20

4

300

2×20

2

59

25

15

2×20

4

300

10+20

2

60

26

20

2×20

4

300

2×15

2

61

27

20

2×20

4

300

10+20

2

48

28

3×20

4

300

10

20

2

47

29

20

2×20

4

290

15+20

2

64

30

15

2×20

4

290

10+15

2

50

31

20

2×20

4

280

3×20

2

62

32

2×20

4

280

20

2×20

2

51

33

2×20

4

280

3×20

2

50

34

2×20

4

280

20

2×20

2

43

35

2×20

4

280

3×20

2

53

36

20

20

4

280

2×20

20

2

54

37

2×20

4

280

10+20

2

50

38

15

2×20

4

280

2×10

2

56

39

3×20

4

270

15

2×20

2

57

40

2×20

4

270

15+20+20

2

50

41

2×20

4

260

20

2×20

2

57

42

15+20

4

260

10

2×20

2

43

43

2×20

4

260

10

2×20

2

44

44

2×20

4

260

10+20+20

2

45

45

2×20

4

260

15+15+20

2

46

46

2×20

4

260

10

2×20

2

47

47

20

20

4

260

10+20

20

2

48

48

2×20

4

250

15

2×20

2

49

49

15+20

4

250

10+15+20

2

50

50

2×20

4

240

2×20

2×20

2

51

51

20

4

240

4×20

2

52

52

20

4

240

4×20

2

53

53

20

4

240

3×20

20

2

54

54

20

4

240

10

2×20

2

55

55

15+20

4

240

2×10

20

2

56

56

2×20

4

230

15+20

2×20

2

57

57

20

4

220

4×20

2

58

58

15

4

220

2×20

2×20

2

59

59

15

4

220

10+20

2×20

2

60

60

20

4

220

2×15

2×20

2

61

61

20

4

220

10

3×20

2

62

62

20

4

220

10+20

2×20

2

63

63

20

4

210

15+20

2×20

2

64

64

15

4

210

10+15

2×20

2

65

65

20

4

200

10+20

2×20

2

66

66

15

4

Note 1: Select the largest equivalent aggregated bandwidth supported by the UE as defined in clause 8.7.11.1. Only one test point to be tested.

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Maximum WGap for Intra-band non-contiguous CA, otherwise Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: according to Table 8.7.11.5.4.1-1 depending on the UE category according to Table 8.7.11.5.4.1-2 for UE not supporting 256QAM or Table 8.7.11.5.4.1-3 for UE supporting 256QAM.

1. Connect the SS to the UE antenna connector(s) as shown in TS 36.508 [7] Annex A, Figure A.91.

2. For UE not supporting 256QAM the parameter settings for the cell are set up according to Table 8.7.11.1-1, Table 8.7.11.5.4.1-1 depending on the UE category according to Table 8.7.11.5.4.1-2. For UE supporting 256QAM the parameter settings for the cell are set up according to Table 8.7.11.1-1, Table 8.7.11.5.4.1-1 depending on the UE category according to Table 8.7.11.5.4.1-3.

3. Downlink signals for PCC are initially set up according to Annex C.0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.

4. Propagation conditions are set according to Annex B.0.

5. Ensure the UE is in State 4A-RF according to TS 36.508 [7] clause 5.2A.3. Message contents are defined in clause 8.7.11.5.4.3.

8.7.11.5.4.2 Test procedure

1. Configure SCCs according to Annex C.0, C.1 and Annex C.3.2 for all downlink physical channels.

2. The SS shall configure SCCs as per TS 36.508 [7] clause 5.2A.4. PhysicalConfigDedicated-DEFAULT is defined in Table 8.7.11.5.4.3-3, PhysicalConfigDedicatedSCell-r10-DEFAULT is defined in Table 8.7.11.5.4.3-4. Cell ID = n (where n is 1, 2, 3, 4) applies to S-Celln (where n is 1, 2, 3, 4).

3. The SS activates SCCs by sending the activation MAC-CE (Refer TS 36.321 [13], clauses 5.13, 6.1.3.8). Wait for at least 2 seconds (Refer TS 36.133, clauses 8.3.3.2).

4. Propagation conditions are set according to Annex B.1 (No external noise sources are applied).

5. For UE not supporting 256QAM the SS looks up TBsize in Annex A.3.9 for the RMCs in accordance with table 8.7.11.1-2, for the tests to be performed depending on the UE category according to Table 8.7.11.5.4.1-2. For UE supporting 256QAM the SS looks up TBsize in Annex A.3.9 for the RMCs in accordance with table 8.7.11.1-3, for the tests to be performed depending on the UE category according to Table 8.7.11.5.4.1-3.

6. The SS sets the counters NDL_newtx, NDL_retx, NUL_PDCP and NDDL_PDCP to 0.

7. For each new DL HARQ transmission the SS generates sufficient PDCP SDUs to fill up the TB (Note 1). The SS ciphers the PDCP SDUs, concatenates the resultant PDCP PDUs to form an RLC PDU and then a MAC PDU. The SS transmits the MAC PDU. The SS increments then NDL_newtx by one and NDL_PDCP by the number of new PDCP SDUs (Note 1) included in the sent MAC PDU.

8. If PHY requests a DL HARQ retransmission, the SS performs a HARQ retransmission and increments NDL_retx by one.

9. Steps 7 to 8 are repeated at every TTI for at least 300 frames and the SS waits for 300ms to let any HARQ retransmissions and RLC retransmissions to finish.

10. For each PDCP SDU received at the SS, if the content of the data matches that of the truncated version of the original PDCP SDU generated at the SS, the SS increments NUL_PDCP by one

11. The SS calculates the TB success rate as A = 100%*NDL_newtx / (NDL_newtx + NDL_retx). Measurements are not based on UE feedback but on SS counters instead (NDL_newtx and NDL_retx) in order to validate HARQ feedback received from the UE.

12. The SS calculates the PDCP SDU loss as B = NDL_PDCP – NUL_PDCP

13. The UE passes the test if A > 85% and B = 0.

NOTE 1: In case of RLC PDU retransmission, the number of new required PDCP SDUs is as many as to fill the rest of TB.

8.7.11.5.4.3 Message contents

Message contents are according to TS 36.508 [7] clauses 5.5 and 4.6 and 4.7A, with the following exceptions:

Table 8.7.11.5.4.3-1: CLOSE UE TEST LOOP (in the preamble)

Derivation Path: 36.509 clause 6.1

Information Element

Value/remark

Comment

Condition

Protocol discriminator

1 1 1 1

Skip indicator

0 0 0 0

Message type

1 0 0 0 0 0 0 0

UE test loop mode

0 0 0 0 0 0 0 0

UE test loop mode A

UE test loop mode A LB setup

Length of UE test loop mode A LB setup list in bytes

0 0 0 0 0 0 1 1

Length of one LB setup DRB (3 bytes)

LB setup DRB

0 0 0 0 0 0 0 0,

0 0 1 0 1 0 0 0,

0 0 0 Q4 Q3 Q2 Q1 Q0

UL PDCP SDU size = 40 bits (5 bytes)

Q4..Q0 = Data Radio Bearer identity number for the default radio bearer. See 36.509 clause 6.1

UE test loop mode B LB setup

Not present

Table 8.7.11.5.4.3-2: SecurityModeCommand (in the preamble)

Derivation Path: TS 36.508 clause 4.6.1 table 4.6.1-19

Information Element

Value/remark

Comment

Condition

SecurityModeCommand ::= SEQUENCE {

criticalExtensions CHOICE {

c1 CHOICE{

securityModeCommand-r8 SEQUENCE {

securityConfiguration SEQUENCE {

cipheringAlgorithm

eea2

nextHopChainingCount

Not present

}

nonCriticalExtension SEQUENCE {}

Not present

}

}

}

}

Table 8.7.11.5.4.3-3: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1, Table 5.5.1.2-1

Information Element

Value/remark

Comment

Condition

PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {

antennaInfo CHOICE {

explicitValue ::= SEQUENCE {

transmissionMode

tm3

Transmission mode 3

codebookSubsetRestriction CHOICE {

n2TxAntenna-tm3

10

2TX

n4TxAntenna-tm3

1000

4TX

}

ue-TransmitAntennaSelection CHOICE {

Release

NULL

}

}

}

}

Condition

Explanation

2TX

2 SS Tx antenna P-Cell

4TX

4 SS Tx antenna P-Cell

Table 8.7.11.5.4.3-4: PhysicalConfigDedicatedSCell-r10-DEFAULT

Derivation Path: 36.508 clause 4.6.3 Table 4.6.3-6A

Information Element

Value/remark

Comment

Condition

PhysicalConfigDedicatedSCell-r10-DEFAULT ::= SEQUENCE {

nonUL-Configuration-r10 SEQUENCE {

antennaInfo-r10 CHOICE {

transmissionMode-r10

tm3

Transmission mode 3

codebookSubsetRestriction-r10

10

2TX

codebookSubsetRestriction-r10

1000

4TX

ue-TransmitAntennaSelection CHOICE {

Release

NULL

}

}

pdsch-ConfigDedicated-r10 CHOICE {

4TX

p-a

dB-6

}

}

}

Condition

Explanation

2TX

2 SS Tx antenna S-Cell

4TX

4 SS Tx antenna S-Cell

8.7.11.5.5 Test requirement

The pass fail decision is as specified in the test procedure in clause 8.7.11.5.4.2.

There are no parameters in the test setup or measurement process whose variation impacts the results so there are no applicable test tolerances for this test.