7.1.5 HS-DSCH MAC-hs

34.123-13GPPPart 1: Protocol conformance specificationRelease 15TSUser Equipment (UE) conformance specification

7.1.5.1 MAC-hs reordering and stall avoidance

7.1.5.1.1 Definition and applicability

All UEs which support HS-PDSCH.

7.1.5.1.2 Conformance requirement

When a MAC-hs PDU with TSN = SN is received:

– If SN is within the receiver window:

– if SN < next_expected_TSN, or this MAC-hs PDU has previously been received:

– the MAC-hs PDU shall be discarded.

– else:

– the MAC-hs PDU is placed in the reordering buffer at the place indicated by the TSN.

– If SN is outside the receiver window:

– the received MAC-hs PDU shall be placed above the highest received TSN in the reordering buffer, at the position indicated by SN;

– RcvWindow_UpperEdge shall be set to SN thus advancing the receiver window;

– any MAC-hs PDUs with TSN  RcvWindow_UpperEdge – RECEIVE_WINDOW_SIZE, i.e. outside the receiver window after its position is updated, shall be removed from the reordering buffer and be delivered to the disassembly entity;

– next_expected_TSN shall be set to RcvWindow_UpperEdge – RECEIVE_WINDOW_SIZE + 1;

– All received MAC-hs PDUs with consecutive TSNs from next_expected_TSN (included) up to the first not received MAC-hs PDU are delivered to the disassembly entity.

– next_expected_TSN shall be advanced to the TSN of this first not received MAC-hs PDU.

[…]

If no timer T1 is active:

– the timer T1 shall be started when a MAC-hs PDU with TSN > next_expected_TSN is correctly received.

– T1_TSN shall be set to the TSN of this MAC-hs PDU.

If a timer T1 is already active:

– no additional timer shall be started, i.e. only one timer T1 may be active at a given time.

The timer T1 shall be stopped if:

– the MAC-hs PDU with TSN = T1_TSN can be delivered to the disassembly entity before the timer expires.

When the timer T1expires and T1_TSN > next_expected_TSN:

– all correctly received MAC-hs PDUs with TSN > next_expected_TSN up to and including T1_TSN-1 shall be delivered to the disassembly entity;

– all correctly received MAC-hs PDUs up to the next not received MAC-hs PDU shall be delivered to the disassembly entity.

– next_expected_TSN shall be set to the TSN of the next not received MAC-hs PDU.

When the timer T1 is stopped or expires, and there still exist some received MAC-hs PDUs that can not be delivered to higher layer:

– timer T1 is started

– set T1_TSN to the highest TSN among those of the MAC-hs PDUs that can not be delivered.

[…]

Reference(s)

TS 25.321 clauses 11.6.2.3.1, 11.6.2.3.2

7.1.5.1.3 Test purpose

1. To confirm that the UE performs MAC-hs reordering and delivers RLC PDUs in order to RLC.

2. To confirm that the UE performs stall avoidance in case of missing MAC-hs PDUs based on a) window based stall avoidance and b) timer based stall avoidance.

7.1.5.1.4 Method of test

Initial conditions

System Simulator:

1 cell, default parameters, Ciphering Off.

User Equipment:

The SS establishes the reference radio bearer configuration “Interactive or background / UL:64 DL: [max bit rate depending on UE category] / PS RAB + UL:3.4 DL:3.4 kbps SRBs for DCCH” as specified in TS 34.108, clause 6.10.2.4.5.1. The following parameters are specific for this test case:

Parameter

Value

MAC-hs receiver window size

32

MAC-hs reordering timer T1

400 ms

Polling Info

– Timer poll prohibit

Not Present

– Timer_poll

Not Present

The radio bearer is placed into UE test loop mode 1 with the UL SDU size set to 39 octets.

Let T be the value of MAC-hs reordering timer T1 parameter.

Test procedure

In this test procedure each MAC-hs PDU contains one RLC PDU carrying one SDU of size 39 octets and one length indicator indicating the end of the SDU.

a) The SS transmits a MAC-hs PDU with Transmission Sequence Number (TSN) = 0 containing an RLC PDU with SN=0.

b) The SS checks that the RLC PDU with SN=0 is looped back

c) The SS transmits a MAC-hs PDU with TSN = 1 containing an RLC PDU with SN=1.

d) The SS checks that the RLC PDU with SN=1 is looped back

e) The SS repeats the transmission of the MAC-hs PDUs in step a) and c) with identical content except that the RLC PDUs have SN 2,3

f) The SS checks that no data is looped back (the data is discarded in the UE)

g) The SS transmits a MAC-hs PDU with TSN = 3 containing an RLC PDU with SN=3

h) The SS waits 400 ms and checks that no data is looped back and no RLC status report is received during that time

i) The SS transmits a MAC-hs PDU with TSN = 2 containing an RLC PDU with SN=2

j) The SS checks that the RLC PDUs with SN = 2,3 are looped back

k) The SS transmits a MAC-hs PDU with TSN = 6 containing an RLC PDU with SN=4

l) The SS transmits a MAC-hs PDU with TSN = 7 containing an RLC PDU with SN=5

m) The SS transmits a MAC-hs PDU with TSN = 38 containing an RLC PDU with SN=6

n) The SS checks that the RLC PDU with SN = 4 and 5 is looped back but the RLC PDU with SN = 6 is not looped back

o) The SS waits 400 ms and checks that the RLC PDU with SN = 6 is looped back after this time

Expected sequence

Step

Direction

Message

Comments

UE

SS

1

MAC-hs PDU with TSN = 0, containing RLC PDU with SN = 0

2

RLC PDU with SN 0

3

MAC-hs PDU with TSN = 1, containing RLC PDU with SN = 1

4

RLC PDU with SN 1

5

MAC-hs PDU with TSN = 0, containing RLC PDU with SN = 2

The duplicated data is discarded in the UE

6

MAC-hs PDU with TSN = 1, containing RLC PDU with SN = 3

The duplicated data is discarded in the UE

7

MAC-hs PDU with TSN = 3, containing RLC PDU with SN = 3

8

SS waits T ms and checks that no data is looped back and no RLC status report is received

The waiting time may need to be adjusted to assure that T1 has not expired in the UE

9

MAC-hs PDU with TSN = 2, containing RLC PDU with SN = 2

10

RLC PDUs with SN 2,3

11

MAC-hs PDU with TSN = 6, containing RLC PDU with SN = 4

12

MAC-hs PDU with TSN = 7, containing RLC PDU with SN = 5

13

MAC-hs PDU with TSN = 38, containing RLC PDU with SN = 6

SS need to transmit this PDU before timer T1 in UE expires (400 ms after reception of MAC-hs PDU with TSN=6). Note: TA

14

RLC PDUs with SN 4,5

The RLC PDUs with SN = 4,5 is looped back after reception of the MAC_hs PDU in step 13, i.e. before timer T1 expires

15

SS waits T ms and checks that the RLC PDU with SN = 6 is not looped back during this time

16

RLC PDU with SN 6

The RLC PDU with SN = 6 is looped back after expiry of T1.

Note: TB

NOTE 1: The RLC SN in step 5,6 is increased since otherwise the data would be discarded by RLC even if the MAC-hs reordering does not work correctly. Since the data is discarded the same RLC SN can be reused later in the test sequence.

NOTE 2: In step 8 the absence of an RLC status report is used to check that the RLC PDU with SN = 3 is not delivered to RLC. If the RLC PDU was delivered to RLC the gap in the SN would trigger a status report (detection of missing PDUs).

NOTE3: In step13, the timer T1 is restarted in the UE since the PDU with TSN = 38 can not be delivered to higher layers.

NOTE 4: General timer tolerance as defined by 34.108 sub-clause 4.2.3 applies.

Specific Message Contents

None

7.1.5.1.5 Test requirements

1. After step 1, the RLC PDU with SN = 0 shall be looped back

2. After step 3, the RLC PDU with SN = 1 shall be looped back

3. After step 5 and 6 , no data shall be looped back

4. After step 7, no data shall be looped back and no RLC status report shall be received

5. After step 9, the RLC PDUs with SN = 2,3 shall be looped back

6. After step 13, the RLC PDUs with SN = 4,5 shall be looped back

7. In step 16, the RLC PDU with SN = 6 shall be looped back and TB –TA shall be equal to T ms .

7.1.5.2 MAC-hs priority queue handling

7.1.5.2.1 Definition and applicability

All UEs which support HS-PDSCH.

7.1.5.2.2 Conformance requirement

Reordering Queue distribution:

The reordering queue distribution function routes the MAC-hs PDUs to the correct reordering buffer based on the Queue ID.

[…]

The HARQ process processes the Queue ID in the received MAC-hs PDUs. The UE shall:

– arrange the received MAC-hs PDUs in queues based on the Queue ID.

[…]

Reference(s)

TS 25.321 clauses 4.2.3.3 and 11.6.2.2

7.1.5.2.3 Test purpose

1. To confirm that the UE handles several priority queues, where different radio bearers are mapped to different queues.

7.1.5.2.4 Method of test

Initial conditions

System Simulator:

1 cell, default parameters, Ciphering Off.

User Equipment:

The SS establishes the reference radio bearer configuration “5 x Interactive or background / UL: 8 kbps DL: [max bit rate depending on UE category] / UM PS RAB” as specified in TS 34.108, clause 6.11.4a.1 with the logical channel, transport channel and queue identities set to:

Logical Channel ID

MAC-d flow (DL)

Queue ID

Comment

7

1

0

RB5

8

1

0

RB6

9

2

1

RB7

10

2

2

RB8

13

3

3

RB9

NOTE 1: LCH 7-8 emulates logical channels with the same priority whereas LCH 9-10 emulates logical channels with different priorities.

NOTE 2: The radio bearer numbers refer to the radio bearers as specified in TS 34.108 clause 6.11.4a.1.

The following parameters are specific for this test case:

– Timer poll prohibit

Not Present

– Timer_poll

Not Present

The radio bearer is placed into UE test loop mode 1 with the UL SDU size set to 40 octets for RB5, RB6 and 39 octets for RB7, RB8, RB9.

Test procedure

In this test procedure each MAC-hs PDU contains one RLC PDU carrying one SDU of size 39 or 40 octets (depending on the RB Identity, see Initial conditions) and one length indicator indicating the end of the SDU.

a) The SS transmits a MAC-hs PDU where:

1. The TSN = 0

2. The Queue ID = 0

3. The MAC-hs PDU contains an RLC PDU with SN=0.

b) The SS checks that the RLC PDU with SN=0 is looped back and checks that the logical channel IDs are correct.

c) The SS repeats steps a), b) with the Logical channel ID, Queue ID and TSN field set as follows:

Iteration

Logical Channel ID

Queue ID Value

TSN Value

1

7

0

0

2

8

0

1

3

9

1

0

4

10

2

0

5

13

3

0

Expected sequence

Step

Direction

Message

Comments

UE

SS

1

MAC-hs PDU containing an RLC PDU with SN = 0. The Logical channel ID, Queue ID and TSN are set according to the table above.

2

RLC PDU with SN = 0

Steps 1 to 2 of the expected sequence are repeated for iteration 2-5.

7.1.5.2.5 Test requirements

1. In step 2, for each iteration, the RLC PDU with SN=0 shall be looped back with the logical channel ID as specified by the table below:

Iteration

Logical Channel ID

1

7

2

8

3

9

4

10

5

13

NOTE: Logical Channel ID 13 is the Uplink Logical Channel Identity of RB9.

7.1.5.3 MAC-hs PDU header handling

7.1.5.3.1 Definition and applicability

All UEs which support HS-PDSCH.

7.1.5.3.2 Conformance requirement

MAC PDU (HS-DSCH):

[…]

The following fields are included in the MAC header for HS-DSCH:

– Version Flag (VF):
The VF field is a one bit flag providing extension capabilities of the MAC-hs PDU format. The VF field shall be set to zero and the value one is reserved in this version of the protocol.

– Queue identifier (Queue ID):
The Queue ID field provides identification of the reordering queue in the receiver, in order to support independent buffer handling of data belonging to different reordering queues. The length of the Queue ID field is 3 bit.

– Transmission Sequence Number (TSN):
The TSN field provides an identifier for the transmission sequence number on the HS-DSCH. The TSN field is used for reordering purposes to support in-sequence delivery to higher layers. The length of the TSN field is 6 bit.

– Size index identifier (SID):
The SID fields identifies the size of a set of consecutive MAC-d PDUs. The MAC-d PDU size for a given SID is configured by higher layers and is independent for each Queue ID. The length of the SID field is 3 bit.

– Number of MAC-D PDUs (N):
The number of consecutive MAC-d PDUs with equal size is identified with the N field. The length of the N field is 7 bits. In FDD mode, the maximum number of PDUs transmitted in a single TTI shall be assumed to be 70. In 1.28 Mcps TDD mode, the maximum number of PDUs transmitted in a single TTI shall be assumed to be 45. In 3.84 Mcps TDD mode, the maximum number of PDUs transmitted in a single TTI shall be assumed to be 318. If more PDUs than the defined maximum number of PDUs for the corresponding mode are received, the UE behaviour is unspecified.

– Flag (F):
The F field is a flag indicating if more fields are present in the MAC-hs header or not. If the F field is set to "0" the F field is followed by an additional set of SID, N and F fields. If the F field is set to "1" the F field is followed by a MAC-d PDU. The maximum number of MAC-hs header extensions, i.e. number of fields F set to “0”, in a single TTI shall be assumed to be 7. If more extensions than the maximum defined for the corresponding mode are included in a TTI, the UE behaviour is unspecified.

[…]

a) Use of reserved coding in the MAC header

If the MAC entity receives a MAC PDU with a header field using a value marked as reserved for this version of the protocol, it shall discard the PDU, unless explicitly mentioned otherwise.

b) Inconsistent MAC header

If the MAC entity receives a MAC PDU with a header inconsistent with the configuration received from RRC, it shall discard the PDU. E.g.: In case DTCH is mapped to RACH/FACH, the MAC entity shall discard a PDU with a C/T field indicating a logical channel number that is not configured.

[…]

Reference(s)

TS 25.321 clauses 9.1.4, 9.2.2, 10

7.1.5.3.3 Test purpose

1. To confirm that the UE discards PDUs with reserved values of the fields in the MAC header

2. To confirm that the UE discards PDUs with values in the MAC header that are inconsistent with the RRC configuration.

3. To confirm that the UE correctly reads the MAC header and disassembles the MAC-hs PDU into MAC-d PDUs and delivers the MAC-d PDUs to the RLC layer.

7.1.5.3.4 Method of test

Initial conditions

System Simulator:

1 cell, default parameters, Ciphering Off.

User Equipment:

The SS establishes the reference radio bearer configuration “Interactive or background / UL:64 DL: [max bit rate depending on UE category] / PS RAB + UL:3.4 DL:3.4 kbps SRBs for DCCH” as specified in TS 34.108, clause 6.10.2.4.5.1. The following parameters are specific for this test case:

Parameter

Value

UMD_PDU_size1

136 bit

UMD_PDU_size2

328 bit

Queue ID

0

Size Index Identifier (SID)

SID =0: 136 bit

SID =1: 328 bit

MAC-hs reordering timer T1

400 ms

MAC-hs receiver window size

32

The RB is configured with 2 RLC PDU sizes UMD_PDU_size1 and UMD_PDU_size2.

The radio bearer is placed into UE test loop mode 1 with the UL SDU size set to 39 octets.

Let T be the value of MAC-hs reordering timer T1 parameter.

Test procedure

a) The SS transmits a MAC-hs PDU containing:

8 RLC UMD PDUs where:

RLC PDUs with SN= 0, 2, 4, 6has the PDU size UMD_PDU_size1 and contains one SDU of length 14 octets .

RLC PDUs with SN= 1, 3, 5, 7 has the PDU size UMD_PDU_size2 and contains one SDU of length 38 octets .

The first RLC PDU with SN=0 will have two Length Indicators. The first Length Indicator will be set to 1111100 (starting of the SDU) and the second length Indicator will have the exact size of the first PDU.

The remaining RLC PDUs will also have two length Indicators. The first LI will have the exact size of the PDU and the second LI will be set to 1111111(the rest of the RLC PDU has padding bits and the number padding bits will be zero).The MAC fields in the MAC-hs header shall be set according to 25.321 with the following exception:

Field

Value

Version flag VF

1

b) The SS checks that the UE does not loop back any data (since the MAC-hs PDU in the previous step is discarded)

c) The SS again transmits a MAC-hs PDU as in a) above, but this time sets the fields in the MAC-hs header according to 25.321 with the following exception:

Field

Value

Size index identifier (SID)

SID =2: 136 bit

SID =3: 328 bit

The sequence numbers in the RLC headers shall be identical with those sent in a).

d) The SS checks that the UE does not loop back any data (since the MAC-hs PDU in the previous step is discarded)

e) The SS again transmits a MAC-hs PDU as in a) above, but this time sets the fields in the MAC-hs header according to 25.321. The sequence numbers in the RLC headers shall be identical with those sent in a).

f) The SS checks that the UE loops back 8 RLC PDUs and checks the sequence numbers of the RLC PDUs

Expected sequence

Step

Direction

Message

Comments

UE

SS

1

MAC-hs PDU with a reserved value of the version flag

discarded by the UE

2

wait for T ms

SS checks that no RLC PDUs are looped back (note)

3

MAC-hs PDU with a value of the size index identifier that is inconsistent with RRC configuration

discarded by the UE

4

wait for T ms

SS checks that no RLC PDUs are looped back (note)

5

MAC-hs PDU with correct values of the MAC-hs header

Accepted by the UE and the contained data is looped back.

6

RLC PDUs with SN 0,1, …,7

NOTE General timer tolerance as defined by 34.108 sub-clause 4.2.3 applies.

Specific Message Contents

See test procedure

7.1.5.3.5 Test requirements

1. After step 1, no data shall be looped back to the SS

2. After step 3, no data shall be looped back to the SS

3. After step 5, the RLC PDUs with SN =0,1, …,7 shall be looped back to the SS

7.1.5.4 MAC-hs retransmissions

7.1.5.4.1 Definition and applicability

All UEs which support HS-PDSCH.

7.1.5.4.2 Conformance requirement

[…]

The UE shall:

– if the New Data Indicator has been incremented compared to the value in the previous received transmission in this HARQ process or this is the first received transmission in the HARQ process:

– replace the data currently in the soft buffer for this HARQ process with the received data.

– if the Transport Block Size index value is equal to 111111 (FDD only):

– generate a positive acknowledgement (ACK) of the data in this HARQ process;

– discard the received data;

– assume that the data has been successfully decoded.

– if the New Data Indicator is identical to the value used in the previous received transmission in the HARQ process:

– if the Transport Block Size index value is equal to 111111 (FDD only):

– assume that the transport block size is identical to the last valid transport block size signalled for this HARQ process.

– if the data has not yet been successfully decoded:

– combine the received data with the data currently in the soft buffer for this HARQ process.

– if the data in the soft buffer has been successfully decoded and no error was detected:

– deliver the decoded MAC-hs PDU to the reordering entity;

– generate a positive acknowledgement (ACK) of the data in this HARQ process.

– else:

– generate a negative acknowledgement (NAK) of the data in this HARQ process;

– schedule the generated positive or negative acknowledgement for transmission and the time of transmission relative to the reception of data in a HARQ process is configured by upper layer.

[…]

Reference(s)

TS 25.321 clauses 11.6.22

7.1.5.4.3 Test purpose

1. To confirm that the UE correctly transmit positive and negative acknowledgements when receiving MAC-hs PDUs

7.1.5.4.4 Method of test

Initial conditions

System Simulator:

1 cell, default parameters, Ciphering Off.

User Equipment:

The SS establishes the reference radio bearer configuration “Interactive or background / UL:64 DL: [max bit rate depending on UE category] / PS RAB + UL:3.4 DL:3.4 kbps SRBs for DCCH” as specified in TS 34.108, clause 6.10.2.4.5.1. The following parameters are specific for this test case:

Parameter

Value

Polling info

– Timer Poll Prohibit

Not Present

– Timer_poll

Not Present

The radio bearer is placed into UE test loop mode 1 with the UL SDU size set to 39 octets.

Test procedure

In this test procedure each MAC-hs PDU contains one RLC PDU carrying one SDU of size 39 octets and one length indicator indicating the end of the SDU.

a) The SS transmits a MAC-hs PDU where:

1. The TSN = 0

2. The HARQ process id = 0

3. The Queue ID = 0

4. The MAC-hs PDU contains an RLC PDU with SN=0.

5. The physical layer CRC is modified such that the CRC check in the UE will fail

b) The SS checks that a negative acknowledgement is received for the correct HARQ process and no RLC PDU loop backed by UE

c) The SS transmits a MAC-hs PDU with the same content as in step a) but where the CRC is correct

d) The SS checks that a positive acknowledgement is received for the correct HARQ process and RLC PDU is loop backed by UE.

e) The SS repeats steps a), b), c) & d) with the HARQ process, TSN and RLC SN set as follows for iteration 2 to 8:

Iteration

HARQ process

TSN

RLC SN

1

0

0

0

2

1

1

1

3

2

2

2

4

3

3

3

5

4

4

4

6

5

5

5

7

6

6

6

8

7

7

7

Expected sequence

Step

Direction

Message

Comments

UE

SS

1

MAC-hs PDU sent in process N

Erroneous CRC

2

MAC-hs negative acknowledgement with process id = N

2a

SS checks for 5 sec that UE does not send loop backed PDU

3

MAC-hs PDU sent in process N

4

MAC-hs positive acknowledgement with process id = N

5

RLC Loop Backed PDU

NOTE: The process id N in step 1-4 is taken from the table in the Test procedure description above.

Steps 1 to 5 of the expected sequence are repeated for iteration 2-8.

7.1.5.4.5 Test requirements

1. After step 1, a MAC-hs negative acknowledgement shall be received for the correct HARQ process

2. After step 3, a MAC-hs positive acknowledgement shall be received for the correct HARQ process

7.1.5.5 MAC-hs reset

7.1.5.5.1 Definition and applicability

All UEs which support HS-PDSCH.

7.1.5.5.2 Conformance requirement

Rel-5 and Rel-6:

If a reset of the MAC-hs entity is requested by upper layers, the UE shall:

– flush soft buffer for all configured HARQ processes;

– stop all active re-ordering release timer (T1) and set all timer T1 to their initial value;

– start TSN with value 0 for the next transmission on every configured HARQ process;

– initialise the variables RcvWindow_UpperEdge and next_expected_TSN to their initial values;

– disassemble all MAC-hs PDUs in the re-ordering buffer and deliver all MAC-d PDUs to the MAC-d entity;

– flush the re-ordering buffer.

and then:

– indicate to all AM RLC entities mapped on HS-DSCH to generate a status report.

[…]

Rel-7:

If a reset of the MAC-hs entity is requested by upper layers, the UE shall at the activation time indicated by higher layers:

– flush soft buffer for all configured HARQ processes;

– stop all active re-ordering release timer (T1) and set all timer T1 to their initial value;

– start TSN with value 0 for the next transmission on every configured HARQ process;

– initialise the variables RcvWindow_UpperEdge and next_expected_TSN to their initial values;

– disassemble all MAC-hs PDUs in the re-ordering buffer and deliver all MAC-d PDUs to the MAC-d entity;

– flush the re-ordering buffer.

[…]

Reference(s)

TS 25.321 clause 11.6.2.5

7.1.5.5.3 Test purpose

1. To confirm that the UE flushes the reordering buffer and delivers all MAC-d PDUs in the buffer to higher layers upon reset.

2. To confirm that the UE initializes the TSN and next_expected_TSN to their initial values.

7.1.5.5.4 Method of test

Initial conditions

System Simulator:

1 cell, default parameters, Ciphering Off

User Equipment:

The SS establishes the reference radio bearer configuration “Interactive or background / UL:64 DL: [max bit rate depending on UE category] / PS RAB + UL:3.4 DL:3.4 kbps SRBs for DCCH” as specified in TS 34.108, clause 6.10.2.4.5.1. The following parameters are specific for this test case:

Parameter

Value

MAC-hs receiver window size

32

MAC-hs reordering timer T1

400 ms

Polling Info

– Timer poll prohibit

Not Present

– Timer poll

Disabled

The radio bearer is placed into UE test loop mode 1 with the UL SDU size set to 39 octets.

Test procedure

In this test procedure each MAC-hs PDU contains one RLC PDU carrying one SDU of size 39 octets and one length indicator indicating the end of the SDU.

a) The SS transmits a MAC-hs PDU with Transmission Sequence Number (TSN) = 0 containing an RLC PDU with SN=0

b) The SS checks that the RLC PDU with SN=0 is looped back

b) The SS transmits 2 MAC-hs PDUs with TSN = 2,3 containing the RLC PDUs with SN=1,2

c) The SS initiates a MAC-hs reset by transmitting a PHYSICAL CHANNEL RECONFIGURATION message

d) The SS checks that the RLC PDUs with SN=1,2 are looped back

e) The UE may send an RLC status report

d) The SS transmits a MAC-hs PDU with TSN = 0 containing an RLC PDU with SN=3

e) The SS checks that the RLC PDU with SN=3 is looped back

Expected sequence

Step

Direction

Message

Comments

UE

SS

1

MAC-hs PDU with TSN = 0, containing RLC PDU with SN = 0

2

RLC PDU with SN 0

3

MAC-hs PDU with TSN = 2, containing RLC PDU with SN = 1

4

MAC-hs PDU with TSN = 3, containing RLC PDU with SN = 2

5

SS transmits a Physical Channel Reconfiguration message to trigger a MAC-hs reset

6

Physical Channel Reconfiguration COMPLETE

7

RLC PDUs with SN 1,2

The RLC PDUs are delivered directly after the MAC-hs reset i.e. before T1 expires.

8

RLC status report

Optional

9

MAC-hs PDU with TSN = 0, containing RLC PDU with SN = 3

10

RLC PDU with SN 3

NOTE: Steps 6-8 may occur in different order.

Specific Message Contents

PHYSICAL CHANNEL RECONFIGURATION (Step 5)

Use the same message as specified for "Packet to CELL_DCH from CELL_DCH in PS" in 34.108 except for the following:

Information Element

Value/remark

Downlink information common for all radio links

– MAC-hs reset indicator

TRUE

7.1.5.5.5 Test requirements

1. After step 1, the RLC PDU with SN = 0 shall be looped back

2. After step 5, the RLC PDUs with SN = 1,2 shall be looped back

3. After step 9, the RLC PDU with SN=3 shall be looped back

7.1.5.6 MAC-hs transport block size selection

7.1.5.6.1 Definition and applicability

All UEs which support HS-PDSCH and FDD.

7.1.5.6.2 Conformance requirement

For HS-DSCH the transport block size is derived from the value signalled on the HS-SCCH. The mapping between the TFRI value and the transport block size for each mode is specified below:

For all transmissions of a transport block, the transport block size is derived from the TFRI value as specified below, except only in those cases of retransmissions where the Node-B selects a combination for which no mapping exists between the original transport block size and the selected combination of channelisation Code set and modulation type. In such cases, the transport block size index value signalled to the UE shall be set to 111111, i.e., ki=63.

Let ki be the TFRI signalled on the HS-SCCH value and let k0,i be the value in the table 7.1.5.6.1 corresponding to the modulation and the number of codes signalled on the HS-SCCH. Let kt be the sum of the two values: kt = ki + k0,i. The transport block size L(kt) can be obtained by accessing the position kt in the table in Annex A (normative) or by using the formula below (informative):

If kt < 40

else

End

Table 7.1.5.6.1: Values of k0,i for different numbers of channelization codes and modulation schemes

Combination i

Modulation scheme

Number of channelization codes

0

QPSK

1

1

1

2

40

2

3

63

3

4

79

4

5

92

5

6

102

6

7

111

7

8

118

8

9

125

9

10

131

10

11

136

11

12

141

12

13

145

13

14

150

14

15

153

15

16QAM

1

40

16

2

79

17

3

102

18

4

118

19

5

131

20

6

141

21

7

150

22

8

157

23

9

164

24

10

169

25

11

175

26

12

180

27

13

184

28

14

188

29

15

192

……

The following table provides the mapping between kt (as per the definition above) and the HS-DSCH Transport Block Size (L(kt)):

Index

TB Size

Index

TB Size

Index

TB Size

1

137

86

1380

171

6324

2

149

87

1405

172

6438

3

161

88

1430

173

6554

4

173

89

1456

174

6673

5

185

90

1483

175

6793

6

197

91

1509

176

6916

7

209

92

1537

177

7041

8

221

93

1564

178

7168

9

233

94

1593

179

7298

10

245

95

1621

180

7430

11

257

96

1651

181

7564

12

269

97

1681

182

7700

13

281

98

1711

183

7840

14

293

99

1742

184

7981

15

305

100

1773

185

8125

16

317

101

1805

186

8272

17

329

102

1838

187

8422

18

341

103

1871

188

8574

19

353

104

1905

189

8729

20

365

105

1939

190

8886

21

377

106

1974

191

9047

22

389

107

2010

192

9210

23

401

108

2046

193

9377

24

413

109

2083

194

9546

25

425

110

2121

195

9719

26

437

111

2159

196

9894

27

449

112

2198

197

10073

28

461

113

2238

198

10255

29

473

114

2279

199

10440

30

485

115

2320

200

10629

31

497

116

2362

201

10821

32

509

117

2404

202

11017

33

521

118

2448

203

11216

34

533

119

2492

204

11418

35

545

120

2537

205

11625

36

557

121

2583

206

11835

37

569

122

2630

207

12048

38

581

123

2677

208

12266

39

593

124

2726

209

12488

40

605

125

2775

210

12713

41

616

126

2825

211

12943

42

627

127

2876

212

13177

43

639

128

2928

213

13415

44

650

129

2981

214

13657

45

662

130

3035

215

13904

46

674

131

3090

216

14155

47

686

132

3145

217

14411

48

699

133

3202

218

14671

49

711

134

3260

219

14936

50

724

135

3319

220

15206

51

737

136

3379

221

15481

52

751

137

3440

222

15761

53

764

138

3502

223

16045

54

778

139

3565

224

16335

55

792

140

3630

225

16630

56

806

141

3695

226

16931

57

821

142

3762

227

17237

58

836

143

3830

228

17548

59

851

144

3899

229

17865

60

866

145

3970

230

18188

61

882

146

4042

231

18517

62

898

147

4115

232

18851

63

914

148

4189

233

19192

64

931

149

4265

234

19538

65

947

150

4342

235

19891

66

964

151

4420

236

20251

67

982

152

4500

237

20617

68

1000

153

4581

238

20989

69

1018

154

4664

239

21368

70

1036

155

4748

240

21754

71

1055

156

4834

241

22147

72

1074

157

4921

242

22548

73

1093

158

5010

243

22955

74

1113

159

5101

244

23370

75

1133

160

5193

245

23792

76

1154

161

5287

246

24222

77

1175

162

5382

247

24659

78

1196

163

5480

248

25105

79

1217

164

5579

249

25558

80

1239

165

5680

250

26020

81

1262

166

5782

251

26490

82

1285

167

5887

252

26969

83

1308

168

5993

253

27456

84

1331

169

6101

254

27952

85

1356

170

6211

Reference(s)

3GPP TS 25.321, 9.2.3, 9.2.3.1 and Annex A

7.1.5.6.3 Test purpose

To verify that the UE selects the correct transport block size based on the TFRI value signalled on the HS-SCCH.

7.1.5.6.4 Method of test

NOTE: The reference to UE Categories refers to the UE capability as signalled in the Rel-5 IE “HS-DSCH physical layer category” (1 to 12). All UEs supporting HS-DSCH should signal a category between 1 and 12 for this IE even if the UE physical capability category is above 12. This IE corresponds to the HS-DSCH category supported by the UE when MAC-ehs is not configured.

Definition of test variables:

Ncodes

Number of HS-DSCH codes (1..15, maximum number dependent on UE category)

M

Type of modulation scheme (QPSK, 16QAM)

ki

TFRI signalled on the HS-SCCH value

K0,I

See table 7.1.5.6.2

kt

Transport Block Size index (=ki + k0,I ), see table 7.1.5.6.3

TBsize

Transport Block size

NPDUs

Number of MAC-d PDUs

MAC-hs_header_size

MAC-hs header size for the reference HS-DSCH radio bearer configuration under test.

MAC-d_PDU_size

MAC-d PDU size for the reference HS-DSCH radio bearer configuration under test.

Table 7.1.5.6.2: Values of k0,i for different numbers of channelization codes and modulation schemes

Combination I

Modulation scheme

Number of channelization codes

0

QPSK

1

1

1

2

40

2

3

63

3

4

79

4

5

92

5

6

102

6

7

111

7

8

118

8

9

125

9

10

131

10

11

136

11

12

141

12

13

145

13

14

150

14

15

153

15

16QAM

1

40

16

2

79

17

3

102

18

4

118

19

5

131

20

6

141

21

7

150

22

8

157

23

9

164

24

10

169

25

11

175

26

12

180

27

13

184

28

14

188

29

15

192

Table 7.1.5.6.3: Mapping of HS-DSCH Transport Block Size for FDD to value of index kt (=ki + k0,I)

Index

TB Size

Index

TB Size

Index

TB Size

1

137

86

1380

171

6324

2

149

87

1405

172

6438

3

161

88

1430

173

6554

4

173

89

1456

174

6673

5

185

90

1483

175

6793

6

197

91

1509

176

6916

7

209

92

1537

177

7041

8

221

93

1564

178

7168

9

233

94

1593

179

7298

10

245

95

1621

180

7430

11

257

96

1651

181

7564

12

269

97

1681

182

7700

13

281

98

1711

183

7840

14

293

99

1742

184

7981

15

305

100

1773

185

8125

16

317

101

1805

186

8272

17

329

102

1838

187

8422

18

341

103

1871

188

8574

19

353

104

1905

189

8729

20

365

105

1939

190

8886

21

377

106

1974

191

9047

22

389

107

2010

192

9210

23

401

108

2046

193

9377

24

413

109

2083

194

9546

25

425

110

2121

195

9719

26

437

111

2159

196

9894

27

449

112

2198

197

10073

28

461

113

2238

198

10255

29

473

114

2279

199

10440

30

485

115

2320

200

10629

31

497

116

2362

201

10821

32

509

117

2404

202

11017

33

521

118

2448

203

11216

34

533

119

2492

204

11418

35

545

120

2537

205

11625

36

557

121

2583

206

11835

37

569

122

2630

207

12048

38

581

123

2677

208

12266

39

593

124

2726

209

12488

40

605

125

2775

210

12713

41

616

126

2825

211

12943

42

627

127

2876

212

13177

43

639

128

2928

213

13415

44

650

129

2981

214

13657

45

662

130

3035

215

13904

46

674

131

3090

216

14155

47

686

132

3145

217

14411

48

699

133

3202

218

14671

49

711

134

3260

219

14936

50

724

135

3319

220

15206

51

737

136

3379

221

15481

52

751

137

3440

222

15761

53

764

138

3502

223

16045

54

778

139

3565

224

16335

55

792

140

3630

225

16630

56

806

141

3695

226

16931

57

821

142

3762

227

17237

58

836

143

3830

228

17548

59

851

144

3899

229

17865

60

866

145

3970

230

18188

61

882

146

4042

231

18517

62

898

147

4115

232

18851

63

914

148

4189

233

19192

64

931

149

4265

234

19538

65

947

150

4342

235

19891

66

964

151

4420

236

20251

67

982

152

4500

237

20617

68

1000

153

4581

238

20989

69

1018

154

4664

239

21368

70

1036

155

4748

240

21754

71

1055

156

4834

241

22147

72

1074

157

4921

242

22548

73

1093

158

5010

243

22955

74

1113

159

5101

244

23370

75

1133

160

5193

245

23792

76

1154

161

5287

246

24222

77

1175

162

5382

247

24659

78

1196

163

5480

248

25105

79

1217

164

5579

249

25558

80

1239

165

5680

250

26020

81

1262

166

5782

251

26490

82

1285

167

5887

252

26969

83

1308

168

5993

253

27456

84

1331

169

6101

254

27952

85

1356

170

6211

Initial conditions

System Simulator:

1 cell, default parameters, Ciphering Off

User Equipment:

UE in idle mode

The following parameters are specific for this test case:

Common for all UE categories:

Parameter

Value

MAC-d PDU size

336 bits

MAC-hs receiver window size

16

Number of HARQ processes

1

Number of reordering queues

1

UE Category 1 to 4:

Parameter

Value

RLC Transmission window size

128

RLC Receiving window size

512

UE Category 5 and 6:

Parameter

Value

RLC Transmission window size

256

RLC Receiving window size

512

UE Category 7 and 8:

Parameter

Value

RLC Transmission window size

512

RLC Receiving window size

1536

UE Category 9 and 10:

Parameter

Value

RLC Transmission window size

512

RLC Receiving window size

2047

UE Category 11 and 12:

Parameter

Value

RLC Transmission window size

128

RLC Receiving window size

1024

Test procedure

a) The SS establishes the reference radio bearer configuration “Interactive or background / UL:64 DL: [max bit rate depending on UE category] / PS RAB + UL:3.4 DL:3.4 kbps SRBs for DCCH” as specified in TS 34.108, clause 6.10.2.4.5.1. See note 1.

b) The SS closes the test loop using UE test loop mode 1 setting the UL RLC SDU size parameter to 39 octets (312 bits).

c) The SS sets M= QPSK.

d) The SS sets Ncodes = 1.

e) The SS sets k0,i to the value according to table 7.1.5.6.2 based on the actual value of M and Ncodes.

f) The SS sets the test parameter ki to 0.

g) The SS calculates the index value kt (=ki + k0,I) and look up the transport block size, TBsize, for the actual kt in table 7.1.5.6.3

If TBsize is bigger than the UE capability for “Maximum number of bits of an HS-DSCH transport block received within an HS-DSCH TTI” then SS continues with step n) else step h). See note 2.

h) The SS calculates the coding rate using Coding_rate = (TBsize + NCRC ) / (Ncodes . Nphy_bits ).

If Coding_rate falls within any of the ranges defined in table 14.1.3.2.1 then SS continues with step m), else proceed with step i). See note 4.

i) The SS calculates the maximum number of MAC-d PDUs that fits into the MAC-hs transport block:

NPDUs = floor((TBsize – MAC-hs_header_size) / MAC-d_PDU_size)

If NPDUs is bigger than 70 then SS continues with step n) else j).

j) The SS creates a MAC-hs PDU of size TBsize containing NPDUs MAC-d PDUs + padding. The payload data of the MAC-d PDUs contains 4 RLC SDUs of size NPDUs * MAC-d PDU payload size / 4 minus 8 bits (size of 7 bit length indicator and expansion bit). See note 3.

k) The SS configures the HARQ transmission parameters according to TS 34.108 [9], table 6.1.5.1 based on the actual value of M. Then the SS transmits the MAC-hs PDU.

l) The SS checks that the UE returned RLC SDUs has the same content as the first 312 bits of the test data sent by the SS in downlink.

m) The SS increments the test parameter ki by 1. If ki is less than 63 then SS repeats steps g) to m).

n) The SS increments the test parameter Ncodesby 1. If Ncodes is less or equal to the UE capability for “Maximum number of HS-DSCH codes received” then the SS repeats test steps e) to n) else continue with step o). See note 2.

o) If Modulation = QPSK and UE capability for “Supported modulation” is 16QAM then the SS sets the test parameter Modulation to 16QAM and repeats steps d) to o) else continue with step p). See note 2.

p) The SS opens the UE test loop.

q) The SS release the radio bearer.

r) The SS may optionally deactivate the radio bearer test mode.

NOTE 1: The SS configures the physical channel parameters according to the actual UE category under test.

NOTE 2: See table 14.1.3.1.1 in section 14.1.3.1 for FDD HS-DSCH physical layer and RLC and MAC-hs capability parameters and there values for different UE FDD HS-DSCH physical layer categories (UE categories). The capability parameters having impact on the test procedure are: “Maximum number of bits of an HS-DSCH transport block received within an HS-DSCH TTI”, “Maximum number of HS-DSCH codes received” and “Supported modulation”

NOTE 3: The test data for transport channels on HS-DSCH is divided into 4 RLC SDUs to keep the SDU size not to exceed 1500 octets (limit of SDU size in SM).

NOTE 4: See table 14.1.3.2.1 in section 14.1.3.2 for those values of coding rate that must be avoided because of turbo coder irregularities.

Expected sequence

Step

Direction

Message

Comments

UE

SS

1

<–

SYSTEM INFORMATION (BCCH)

Broadcast

2

<–

PAGING TYPE 1 (PCCH)

Paging (PS domain, P-TMSI)

3

–>

RRC CONNECTION REQUEST (CCCH)

RRC

4

<–

RRC CONNECTION SETUP (CCCH)

RRC

5

–>

RRC CONNECTION SETUP COMPLETE (DCCH)

RRC

6

–>

SERVICE REQUEST (DCCH)

GMM

7

<–

SECURITY MODE COMMAND

RRC see note 1

8

–>

SECURITY MODE COMPLETE

RRC see note 1

9

<–

ACTIVATE RB TEST MODE (DCCH)

TC

10

–>

ACTIVATE RB TEST MODE COMPLETE (DCCH)

TC

11

<–

RADIO BEARER SETUP (DCCH)

RRC. For the PS radio bearer the ‘pdcp info’ IE shall be omitted.

12

–>

RADIO BEARER SETUP COMPLETE (DCCH)

RRC

13

<–

CLOSE UE TEST LOOP (DCCH)

TC

UE test mode 1

RLC SDU size is set to 39 octets

14

–>

CLOSE UE TEST LOOP COMPLETE (DCCH)

TC

15

SS

The SS calculates test data for the first TFRC (TFRI,Ncodes and M).

16

<–

DOWNLINK MAC-hs PDU (4 x RLC SDU)

Send test data. The MAC-hs PDU contains 4 RLC SDUs

17

–>

UPLINK RLC SDUs

The SS checks that the content of the received UL RLC SDUs are correct

18

SS

The SS calculates test data for next TFRC and repeat steps 16 to 18 until all TFRCs have been tested.

19

<–

OPEN UE TEST LOOP (DCCH)

TC

20

–>

OPEN UE TEST LOOP COMPLETE (DCCH)

TC

21

RB RELEASE

RRC

22

<–

DEACTIVATE RB TEST MODE

TC

Optional step

23

–>

DEACTIVATE RB TEST MODE COMPLETE

TC

Optional step

Note 1: In addition to activate integrity protection Step 6 and Step 7 are inserted in order to stop T3317 timer in the UE, which starts after transmitting SERVICE REQUEST message.

7.1.5.6.5 Test requirements

For each TFRC the UE shall return a UL RLC SDUs with the same content as the first 312 bits of the test data sent by the SS in downlink.

7.1.5.6a MAC-hs transport block size selection (1.28 Mcps TDD)

7.1.5.6a.1 Definition and applicability

All 1.28 Mcps TDD UEs which support HS-PDSCH.

7.1.5.6a.2 Conformance requirement

The mapping of transport block size, in bits, to TFRI value is dependent upon the UE’s HS-DSCH capability class.

When MAC-hs is used, the bit aligned table of transport block size defined as following shall be used.

If k is the signalled TFRI value then the corresponding HS-DSCH transport block size Lk is given by:

If k = 1..62

where

if the HS-DSCH physical layer category is between 1 and 3 inclusively,

if the HS-DSCH physical layer category is between 4 and 6 inclusively,

if the HS-DSCH physical layer category is between 7 and 9 inclusively,

if the HS-DSCH physical layer category is between 10 and 12 inclusively,

if the HS-DSCH physical layer category is between 13 and 15 inclusively,

and

If k = 63 then,

Lk = 2788 if the HS-DSCH physical layer category is between 1 and 3 inclusively,

5600 if the HS-DSCH physical layer category is between 4 and 6 inclusively,

8416 if the HS-DSCH physical layer category is between 7 and 9 inclusively,

11226 if the HS-DSCH physical layer category is between 10 and 12 inclusively,

14043 if the HS-DSCH physical layer category is between 13 and 15 inclusively.

If k=0, Lk indicates NULL and shall not be used to signal a transport block size in the TFRI.

Transport block sizes calculated by this formula shall equal the values indicated in the following tables: –

Table 7.1.5.6a.1: HSDPA Transport Block Sizes for 1.28 Mcps TDD, for HS-DSCH physical layer category [1, 3], bit aligned

TB index (k)

TB size
[bits]

TB index (k)

TB size
[bits]

TB index (k)

TB size
[bits]

TB index (k)

TB size
[bits]

0

NULL

16

434

32

817

48

1540

1

240

17

451

33

851

49

1602

2

249

18

470

34

885

50

1667

3

259

19

489

35

921

51

1734

4

270

20

508

36

958

52

1804

5

281

21

529

37

996

53

1877

6

292

22

550

38

1037

54

1952

7

304

23

572

39

1078

55

2031

8

316

24

596

40

1122

56

2113

9

329

25

620

41

1167

57

2198

10

342

26

645

42

1214

58

2287

11

356

27

671

43

1263

59

2380

12

370

28

698

44

1314

60

2476

13

385

29

726

45

1367

61

2575

14

401

30

755

46

1423

62

2679

15

417

31

786

47

1480

63

2788

Table 7.1.5.6a.2: HSDPA Transport Block Sizes for 1.28 Mcps TDD, for HS-DSCH physical layer category [4, 6], bit aligned

TB index (k)

TB size
[bits]

TB index (k)

TB size
[bits]

TB index (k)

TB size
[bits]

TB index (k)

TB size
[bits]

0

NULL

16

514

32

1159

48

2613

1

240

17

541

33

1219

49

2749

2

252

18

569

34

1283

50

2893

3

265

19

598

35

1350

51

3043

4

279

20

630

36

1420

52

3202

5

294

21

662

37

1494

53

3369

6

309

22

697

38

1572

54

3544

7

325

23

733

39

1654

55

3729

8

342

24

772

40

1740

56

3924

9

360

25

812

41

1831

57

4128

10

379

26

854

42

1926

58

4343

11

398

27

899

43

2027

59

4570

12

419

28

946

44

2132

60

4808

13

441

29

995

45

2244

61

5058

14

464

30

1047

46

2361

62

5322

15

488

31

1101

47

2484

63

5600

Table 7.1.5.6a.3: HSDPA Transport Block Sizes for 1.28 Mcps TDD, for HS-DSCH physical layer category [7, 9], bit aligned

TB index (k)

TB size
[bits]

TB index (k)

TB size
[bits]

TB index (k)

TB size
[bits]

TB index (k)

TB size
[bits]

0

NULL

16

567

32

1421

48

3559

1

240

17

601

33

1505

49

3769

2

254

18

636

34

1594

50

3991

3

269

19

674

35

1688

51

4227

4

285

20

713

36

1787

52

4477

5

301

21

756

37

1893

53

4741

6

319

22

800

38

2005

54

5021

7

338

23

848

39

2123

55

5318

8

358

24

898

40

2249

56

5632

9

379

25

951

41

2381

57

5964

10

402

26

1007

42

2522

58

6317

11

425

27

1066

43

2671

59

6690

12

451

28

1129

44

2829

60

7085

13

477

29

1196

45

2996

61

7503

14

505

30

1267

46

3173

62

7946

15

535

31

1341

47

3360

63

8416

Table 7.1.5.6a.4: HSDPA Transport Block Sizes for 1.28 Mcps TDD, for HS-DSCH physical layer category [10, 12], bit aligned

TB index (k)

TB size
[bits]

TB index (k)

TB size
[bits]

TB index (k)

TB size
[bits]

TB index (k)

TB size
[bits]

0

NULL

16

608

32

1641

48

4427

1

240

17

647

33

1746

49

4711

2

255

18

688

34

1858

50

5012

3

271

19

732

35

1977

51

5333

4

289

20

779

36

2103

52

5674

5

307

21

829

37

2238

53

6037

6

327

22

882

38

2381

54

6424

7

348

23

939

39

2533

55

6835

8

370

24

999

40

2695

56

7272

9

394

25

1063

41

2868

57

7737

10

419

26

1131

42

3051

58

8232

11

446

27

1203

43

3247

59

8759

12

474

28

1280

44

3455

60

9320

13

505

29

1362

45

3676

61

9916

14

537

30

1449

46

3911

62

10550

15

571

31

1542

47

4161

63

11226

Table 7.1.5.6a.5: HSDPA Transport Block Sizes for 1.28 Mcps TDD, for HS-DSCH physical layer category [13,15], bit aligned

TB index (k)

TB size
[bits]

TB index (k)

TB size
[bits]

TB index (k)

TB size
[bits]

TB index (k)

TB size
[bits]

0

NULL

16

642

32

1836

48

5250

1

240

17

686

33

1961

49

5606

2

256

18

732

34

2094

50

5987

3

273

19

782

35

2236

51

6393

4

292

20

835

36

2388

52

6827

5

312

21

892

37

2550

53

7290

6

333

22

952

38

2723

54

7785

7

355

23

1017

39

2908

55

8313

8

380

24

1086

40

3105

56

8877

9

405

25

1160

41

3316

57

9479

10

433

26

1238

42

3541

58

10123

11

462

27

1322

43

3781

59

10809

12

494

28

1412

44

4037

60

11543

13

527

29

1508

45

4311

61

12326

14

563

30

1610

46

4604

62

13162

15

601

31

1719

47

4916

63

14043

Reference(s)

3GPP TS 25.321 Section 9.2.3.3.

7.1.5.6a.3 Test purpose

To verify that the UE selects the correct transport block size based on the TFRI value signalled on the HS-SCCH.

7.1.5.6a.4 Method of test

Definition of test variables:

Nslots

Number of HS-DSCH slots (1- 6 dependent on UE category)

Ncodes

Number of HS-DSCH codes per timeslot, 1 to 16

k

TFRI signalled on the HS-SCCH value (see Table 7.1.5.6a.2)

TBsize

Transport Block size (see Table 7.1.5.6a.2)

NPDUs

Number of MAC-d PDUs

MAC-hs_header_size

MAC-hs header size for the reference HS-DSCH radio bearer configuration under test.

MAC-d_PDU_size

MAC-d PDU size for the reference HS-DSCH radio bearer configuration under test.

Initial conditions

System Simulator:

1 cell, default parameters, Ciphering Off

User Equipment:

UE in idle mode

The following parameters are specific for this test case:

Common for all UE categories:

Parameter

Value

MAC-d PDU size

336 bits

MAC-hs receiver window size

16

Number of HARQ processes

1

Number of reordering queues

1

UE Category 1 to 3:

Parameter

Value

RLC Transmission window size

128

RLC Receiving window size

512

UE Category 4and 6

Parameter

Value

RLC Transmission window size

256

RLC Receiving window size

512

UE Category 7 and 9:

Parameter

Value

RLC Transmission window size

512

RLC Receiving window size

1536

UE Category 10and 12:

Parameter

Value

RLC Transmission window size

512

RLC Receiving window size

1536

UE Category 13and 15:

Parameter

Value

RLC Transmission window size

512

RLC Receiving window size

1536

Test procedure

a) The SS establishes the reference radio bearer configuration “Interactive or background / UL:64 DL: [max bit rate depending on UE category] / PS RAB + UL:3.4 DL:3.4 kbps SRBs for DCCH” as specified in TS 34.108, clause 6.10.3.4.6.1. See note 1.

b) The SS closes the test loop using UE test loop mode 1 setting the UL RLC SDU size parameter to 39 octets (312 bits).

c) The SS sets Nslots =3.

d) The SS sets Ncodes = 1.

e) The SS calculates TBsize and k for Nslots and Ncodes according to table 7.1.5.6a.2

f) If TBsize is bigger than the UE capability for “Maximum number of bits of an HS-DSCH transport block received within an HS-DSCH TTI” then SS continues with step l) else step g). See note 2.

g) The SS calculates the maximum number of MAC-d PDUs that fits into the MAC-hs transport block:

NPDUs = floor((TBsize – MAC-hs_header_size) / MAC-d_PDU_size)

If NPDUs is bigger than 45 then SS continues with step m) else i).

h) The SS creates a MAC-hs PDU of size TBsize containing NPDUs MAC-d PDUs + padding. The payload data of the MAC-d PDUs contains 4 RLC SDUs of size NPDUs * MAC-d PDU payload size / 4 minus 8 bits (size of 7 bit length indicator and expansion bit). See note 3.

i) The SS transmits the MAC-hs PDU.

j) The SS checks that the UE returned RLC SDUs has the same content as the first 312 bits of the test data sent by the SS in downlink.

k) The SS increments Ncodes by 1. If Ncodes is ≤16 then SS repeats steps e) to k).

l) The SS sets Nslots to the next category supported by the UE and repeats steps d) to l). If there are no more categories supported by the UE (i.e. all categories have been tested) then the test is completed via steps m) through q). See note 2.

m) The SS opens the UE test loop.

n) The SS release the radio bearer.

o) The SS may optionally deactivate the radio bearer test mode.

NOTE 1: The SS configures the physical channel parameters according to the actual UE category under test.

NOTE 2: See 34.108 6.11for 1.28 Mcps TDD HS-DSCH physical layer, RLC and MAC-hs capability parameters and the values for different UE 3.84 Mcps TDD HS-DSCH physical layer categories (UE categories). The capability parameters having impact on the test procedure are: “Maximum number of bits of an HS-DSCH transport block received within an HS-DSCH TTI” andMaximum number of HS-DSCH timeslots per TTI”

NOTE 3: The test data for transport channels on HS-DSCH is divided into 4 RLC SDUs to keep the SDU size not to exceed 1500 octets (limit of SDU size in SM).

Expected sequence:

Step

Direction

Message

Comments

UE

SS

1

<–

SYSTEM INFORMATION (BCCH)

Broadcast

2

<–

PAGING TYPE 1 (PCCH)

Paging (PS domain, P-TMSI)

3

–>

RRC CONNECTION REQUEST (CCCH)

RRC

4

<–

RRC CONNECTION SETUP (CCCH)

RRC

5

–>

RRC CONNECTION SETUP COMPLETE (DCCH)

RRC

6

–>

SERVICE REQUEST (DCCH)

GMM

7

<–

SECURITY MODE COMMAND

RRC see note 1

8

–>

SECURITY MODE COMPLETE

RRC see note 1

9

<–

ACTIVATE RB TEST MODE (DCCH)

TC

10

–>

ACTIVATE RB TEST MODE COMPLETE (DCCH)

TC

11

<–

RADIO BEARER SETUP (DCCH)

RRC. For the PS radio bearer the ‘pdcp info’ IE shall be omitted.

12

–>

RADIO BEARER SETUP COMPLETE (DCCH)

RRC

13

<–

CLOSE UE TEST LOOP (DCCH)

TC

UE test mode 1

RLC SDU size is set to 39 octets

14

–>

CLOSE UE TEST LOOP COMPLETE (DCCH)

TC

15

SS

The SS calculates test data for the first TFRC

16

<–

DOWNLINK MAC-hs PDU (4 x RLC SDU)

Send test data. The MAC-hs PDU contains 4 RLC SDUs

17

–>

UPLINK RLC SDUs

The SS checks that the content of the received UL RLC SDUs are correct

18

SS

The SS calculates test data for next TFRC and repeat steps 16 to 18 until all TFRCs have been tested.

19

<–

OPEN UE TEST LOOP (DCCH)

TC

20

–>

OPEN UE TEST LOOP COMPLETE (DCCH)

TC

21

RB RELEASE

RRC

22

<–

DEACTIVATE RB TEST MODE

TC

Optional step

23

–>

DEACTIVATE RB TEST MODE COMPLETE

TC

Optional step

Note 1: In addition to activate integrity protection Step 6 and Step 7 are inserted in order to stop T3317 timer in the UE, which starts after transmitting SERVICE REQUEST message.

7.1.5.6a.5 Test requirements

For each TFRC the UE shall return a UL RLC SDUs with the same content as the first 312 bits of the test data sent by the SS in downlink.

7.1.5.7 MAC-hs transport block size selection (3.84 Mcps TDD)

7.1.5.7.1 Definition and applicability

All 3.84 Mcps TDD UEs which support HS-PDSCH.

7.1.5.7.2 Conformance requirement

For HS-DSCH the transport block size is derived from the value signalled on the HS-SCCH. The mapping between the TFRI value and the transport block size for each mode is specified below:

Let k be the signalled TFRI value, then the corresponding HS-DSCH transport block size Lk is given by:

If k=1..510

If k = 511

Lk = 102000

If k=0, Lk indicates NULL and shall not be used to signal a transport block size in the TFRI.

Transport block sizes calculated by this formula shall equal the values indicated in Table 7.1.5.7.2

Table 7.1.5.7.2: HSDPA Transport Block Sizes for 3.84 Mcps TDD

TB index (k)

TB size
[bits]

TB index (k)

TB size
[bits]

TB index (k)

TB size
[bits]

TB index (k)

TB size
[bits]

0

NULL

128

372

256

2432

384

15890

1

57

129

377

257

2468

385

16124

2

58

130

383

258

2504

386

16362

3

59

131

389

259

2541

387

16604

4

60

132

394

260

2579

388

16849

5

61

133

400

261

2617

389

17098

6

62

134

406

262

2656

390

17351

7

63

135

412

263

2695

391

17607

8

64

136

418

264

2735

392

17867

9

65

137

424

265

2775

393

18131

10

66

138

431

266

2816

394

18399

11

66

139

437

267

2858

395

18671

12

67

140

443

268

2900

396

18946

13

68

141

450

269

2943

397

19226

14

69

142

457

270

2986

398

19510

15

71

143

463

271

3030

399

19798

16

72

144

470

272

3075

400

20091

17

73

145

477

273

3121

401

20388

18

74

146

484

274

3167

402

20689

19

75

147

491

275

3213

403

20994

20

76

148

499

276

3261

404

21304

21

77

149

506

277

3309

405

21619

22

78

150

514

278

3358

406

21938

23

79

151

521

279

3408

407

22263

24

81

152

529

280

3458

408

22591

25

82

153

537

281

3509

409

22925

26

83

154

545

282

3561

410

23264

27

84

155

553

283

3613

411

23607

28

85

156

561

284

3667

412

23956

29

87

157

569

285

3721

413

24310

30

88

158

578

286

3776

414

24669

31

89

159

586

287

3832

415

25033

32

91

160

595

288

3888

416

25403

33

92

161

604

289

3946

417

25778

34

93

162

613

290

4004

418

26159

35

95

163

622

291

4063

419

26545

36

96

164

631

292

4123

420

26938

37

98

165

640

293

4184

421

27335

38

99

166

650

294

4246

422

27739

39

100

167

659

295

4309

423

28149

40

102

168

669

296

4372

424

28565

41

103

169

679

297

4437

425

28987

42

105

170

689

298

4502

426

29415

43

107

171

699

299

4569

427

29849

44

108

172

709

300

4636

428

30290

45

110

173

720

301

4705

429

30738

46

111

174

730

302

4774

430

31192

47

113

175

741

303

4845

431

31652

48

115

176

752

304

4916

432

32120

49

116

177

763

305

4989

433

32594

50

118

178

775

306

5063

434

33076

51

120

179

786

307

5138

435

33564

52

122

180

798

308

5213

436

34060

53

123

181

809

309

5290

437

34563

54

125

182

821

310

5369

438

35074

55

127

183

834

311

5448

439

35592

56

129

184

846

312

5528

440

36117

57

131

185

858

313

5610

441

36651

58

133

186

871

314

5693

442

37192

59

135

187

884

315

5777

443

37742

60

137

188

897

316

5862

444

38299

61

139

189

910

317

5949

445

38865

62

141

190

924

318

6037

446

39439

63

143

191

937

319

6126

447

40021

64

145

192

951

320

6217

448

40613

65

147

193

965

321

6308

449

41212

66

150

194

980

322

6402

450

41821

67

152

195

994

323

6496

451

42439

68

154

196

1009

324

6592

452

43066

69

156

197

1024

325

6689

453

43702

70

159

198

1039

326

6788

454

44347

71

161

199

1054

327

6889

455

45002

72

163

200

1070

328

6990

456

45667

73

166

201

1085

329

7094

457

46342

74

168

202

1101

330

7198

458

47026

75

171

203

1118

331

7305

459

47721

76

173

204

1134

332

7413

460

48426

77

176

205

1151

333

7522

461

49141

78

178

206

1168

334

7633

462

49867

79

181

207

1185

335

7746

463

50603

80

184

208

1203

336

7860

464

51351

81

186

209

1221

337

7976

465

52109

82

189

210

1239

338

8094

466

52879

83

192

211

1257

339

8214

467

53660

84

195

212

1276

340

8335

468

54453

85

198

213

1294

341

8458

469

55257

86

201

214

1313

342

8583

470

56073

87

204

215

1333

343

8710

471

56901

88

207

216

1353

344

8839

472

57742

89

210

217

1373

345

8969

473

58595

90

213

218

1393

346

9102

474

59460

91

216

219

1413

347

9236

475

60338

92

219

220

1434

348

9373

476

61230

93

222

221

1456

349

9511

477

62134

94

226

222

1477

350

9652

478

63052

95

229

223

1499

351

9794

479

63983

96

232

224

1521

352

9939

480

64928

97

236

225

1543

353

10086

481

65887

98

239

226

1566

354

10235

482

66860

99

243

227

1589

355

10386

483

67848

100

246

228

1613

356

10539

484

68850

101

250

229

1637

357

10695

485

69867

102

254

230

1661

358

10853

486

70899

103

258

231

1685

359

11013

487

71946

104

261

232

1710

360

11176

488

73009

105

265

233

1736

361

11341

489

74087

106

269

234

1761

362

11508

490

75182

107

273

235

1787

363

11678

491

76292

108

277

236

1814

364

11851

492

77419

109

281

237

1840

365

12026

493

78563

110

285

238

1868

366

12204

494

79723

111

290

239

1895

367

12384

495

80901

112

294

240

1923

368

12567

496

82095

113

298

241

1952

369

12752

497

83308

114

303

242

1981

370

12941

498

84539

115

307

243

2010

371

13132

499

85787

116

312

244

2039

372

13326

500

87054

117

316

245

2070

373

13523

501

88340

118

321

246

2100

374

13722

502

89645

119

326

247

2131

375

13925

503

90969

120

331

248

2163

376

14131

504

92313

121

336

249

2195

377

14340

505

93676

122

340

250

2227

378

14551

506

95060

123

346

251

2260

379

14766

507

96464

124

351

252

2293

380

14984

508

97889

125

356

253

2327

381

15206

509

99335

126

361

254

2362

382

15430

510

100802

127

366

255

2397

383

15658

511

102000

Reference(s)

3GPP TS 25.321 Section 9.2.3.2

7.1.5.7.3 Test purpose

To verify that the UE selects the correct transport block size based on the TFRI value signalled on the HS-SCCH.

7.1.5.7.4 Method of test

Definition of test variables:

Nslots

Number of HS-DSCH slots (2, 4, 6 or 12 dependent on UE category)

Ncodes

Number of HS-DSCH codes per timeslot, 1 to 16

k

TFRI signalled on the HS-SCCH value (see Table 7.1.5.7.2)

TBsize

Transport Block size (see Table 7.1.5.7.2)

NPDUs

Number of MAC-d PDUs

MAC-hs_header_size

MAC-hs header size for the reference HS-DSCH radio bearer configuration under test.

MAC-d_PDU_size

MAC-d PDU size for the reference HS-DSCH radio bearer configuration under test.

Initial conditions

System Simulator:

1 cell, default parameters, Ciphering Off

User Equipment:

UE in idle mode

The following parameters are specific for this test case:

Common for all UE categories:

Parameter

Value

MAC-d PDU size

336 bits

MAC-hs receiver window size

16

Number of HARQ processes

1

Number of reordering queues

1

UE Category 1 to 4:

Parameter

Value

RLC Transmission window size

128

RLC Receiving window size

512

UE Category 5 and 6:

Parameter

Value

RLC Transmission window size

256

RLC Receiving window size

512

UE Category 7 and 8:

Parameter

Value

RLC Transmission window size

512

RLC Receiving window size

1536

UE Category 9:

Parameter

Value

RLC Transmission window size

512

RLC Receiving window size

2047

Test procedure

a) The SS establishes the reference radio bearer configuration “Interactive or background / UL:64 DL: [max bit rate depending on UE category] / PS RAB + UL:3.4 DL:3.4 kbps SRBs for DCCH” as specified in TS 34.108, clause 6.10.3.4.6.1. See note 1.

b) The SS closes the test loop using UE test loop mode 1 setting the UL RLC SDU size parameter to 39 octets (312 bits).

c) The SS sets Nslots = 2.

d) The SS sets Ncodes = 1.

e) The SS calculates TBsize and k for Nslots and Ncodes according to table 7.1.5.7.2

f) If TBsize is bigger than the UE capability for “Maximum number of bits of an HS-DSCH transport block received within an HS-DSCH TTI” then SS continues with step l) else step g). See note 2.

g) The SS calculates the maximum number of MAC-d PDUs that fits into the MAC-hs transport block:

NPDUs = floor((TBsize – MAC-hs_header_size) / MAC-d_PDU_size)

If NPDUs is bigger than 318 then SS continues with step m) else i).

h) The SS creates a MAC-hs PDU of size TBsize containing NPDUs MAC-d PDUs + padding. The payload data of the MAC-d PDUs contains 4 RLC SDUs of size NPDUs * MAC-d PDU payload size / 4 minus 8 bits (size of 7 bit length indicator and expansion bit). See note 3.

i) The SS transmits the MAC-hs PDU.

j) The SS checks that the UE returned RLC SDUs has the same content as the first 312 bits of the test data sent by the SS in downlink.

k) The SS increments Ncodes by 1. If Ncodes is ≤16 then SS repeats steps e) to k).

l) The SS sets Nslots to the next category supported by the UE and repeats steps d) to l). If there are no more categories supported by the UE (i.e. all categories have been tested) then the test is completed via steps m) through q). See note 2.

m) The SS opens the UE test loop.

n) The SS release the radio bearer.

o) The SS may optionally deactivate the radio bearer test mode.

NOTE 1: The SS configures the physical channel parameters according to the actual UE category under test.

NOTE 2: See table 18.2.1.4.1.1 in section 18.2.1.4.1 for 3.84 Mcps TDD HS-DSCH physical layer, RLC and MAC-hs capability parameters and the values for different UE 3.84 Mcps TDD HS-DSCH physical layer categories (UE categories). The capability parameters having impact on the test procedure are: “Maximum number of bits of an HS-DSCH transport block received within an HS-DSCH TTI” andMaximum number of HS-DSCH timeslots per TTI”

NOTE 3: The test data for transport channels on HS-DSCH is divided into 4 RLC SDUs to keep the SDU size not to exceed 1500 octets (limit of SDU size in SM).

Expected sequence

Step

Direction

Message

Comments

UE

SS

1

<–

SYSTEM INFORMATION (BCCH)

Broadcast

2

<–

PAGING TYPE 1 (PCCH)

Paging (PS domain, P-TMSI)

3

–>

RRC CONNECTION REQUEST (CCCH)

RRC

4

<–

RRC CONNECTION SETUP (CCCH)

RRC

5

–>

RRC CONNECTION SETUP COMPLETE (DCCH)

RRC

6

–>

SERVICE REQUEST (DCCH)

GMM

7

<–

SECURITY MODE COMMAND

RRC see note 1

8

–>

SECURITY MODE COMPLETE

RRC see note 1

9

<–

ACTIVATE RB TEST MODE (DCCH)

TC

10

–>

ACTIVATE RB TEST MODE COMPLETE (DCCH)

TC

11

<–

RADIO BEARER SETUP (DCCH)

RRC. For the PS radio bearer the ‘pdcp info’ IE shall be omitted.

12

–>

RADIO BEARER SETUP COMPLETE (DCCH)

RRC

13

<–

CLOSE UE TEST LOOP (DCCH)

TC

UE test mode 1

RLC SDU size is set to 39 octets

14

–>

CLOSE UE TEST LOOP COMPLETE (DCCH)

TC

15

SS

The SS calculates test data for the first TFRC

16

<–

DOWNLINK MAC-hs PDU (4 x RLC SDU)

Send test data. The MAC-hs PDU contains 4 RLC SDUs

17

–>

UPLINK RLC SDUs

The SS checks that the content of the received UL RLC SDUs are correct

18

SS

The SS calculates test data for next TFRC and repeat steps 16 to 18 until all TFRCs have been tested.

19

<–

OPEN UE TEST LOOP (DCCH)

TC

20

–>

OPEN UE TEST LOOP COMPLETE (DCCH)

TC

21

RB RELEASE

RRC

22

<–

DEACTIVATE RB TEST MODE

TC

Optional step

23

–>

DEACTIVATE RB TEST MODE COMPLETE

TC

Optional step

Note 1: In addition to activate integrity protection Step 6 and Step 7 are inserted in order to stop T3317 timer in the UE, which starts after transmitting SERVICE REQUEST message.

7.1.5.7.5 Test requirements

For each TFRC the UE shall return a UL RLC SDUs with the same content as the first 312 bits of the test data sent by the SS in downlink.

7.1.5.8 MAC-hs transport block size selection (7.68 Mcps TDD)

7.1.5.8.1 Definition and applicability

All 7.68 Mcps TDD UEs which support HS-PDSCH.

7.1.5.8.2 Conformance requirement

For HS-DSCH the transport block size is derived from the value signalled on the HS-SCCH. The mapping between the TFRI value and the transport block size for each mode is specified below:

Let k be the signalled TFRI value, then the corresponding HS-DSCH transport block size Lk is given by:

If k=1..510

If k = 511

Lk = 204000

If k=0, Lk indicates NULL and shall not be used to signal a transport block size in the TFRI.

Transport block sizes calculated by this formula shall equal the values indicated in Table 7.1.5.8.2

Table 7.1.5.8.2: HSDPA Transport Block Sizes for 7.68 Mcps TDD

TB index (k)

TB size
[bits]

TB index (k)

TB size
[bits]

TB index (k)

TB size
[bits]

TB index (k)

TB size
[bits]

0

NULL

128

442

256

3438

384

26709

1

57

129

449

257

3494

385

27140

2

58

130

457

258

3550

386

27578

3

59

131

464

259

3607

387

28023

4

60

132

472

260

3666

388

28476

5

61

133

479

261

3725

389

28935

6

62

134

487

262

3785

390

29402

7

63

135

495

263

3846

391

29877

8

64

136

503

264

3908

392

30360

9

65

137

511

265

3971

393

30850

10

66

138

519

266

4035

394

31348

11

67

139

528

267

4101

395

31854

12

69

140

536

268

4167

396

32368

13

70

141

545

269

4234

397

32891

14

71

142

553

270

4302

398

33422

15

72

143

562

271

4372

399

33961

16

73

144

572

272

4443

400

34509

17

74

145

581

273

4514

401

35066

18

76

146

590

274

4587

402

35633

19

77

147

600

275

4661

403

36208

20

78

148

609

276

4736

404

36792

21

79

149

619

277

4813

405

37386

22

81

150

629

278

4891

406

37990

23

82

151

639

279

4970

407

38603

24

83

152

650

280

5050

408

39226

25

85

153

660

281

5131

409

39860

26

86

154

671

282

5214

410

40503

27

87

155

682

283

5298

411

41157

28

89

156

693

284

5384

412

41822

29

90

157

704

285

5471

413

42497

30

92

158

715

286

5559

414

43183

31

93

159

727

287

5649

415

43880

32

95

160

739

288

5740

416

44588

33

96

161

751

289

5833

417

45308

34

98

162

763

290

5927

418

46040

35

99

163

775

291

6023

419

46783

36

101

164

787

292

6120

420

47538

37

103

165

800

293

6219

421

48306

38

104

166

813

294

6319

422

49085

39

106

167

826

295

6421

423

49878

40

108

168

840

296

6525

424

50683

41

109

169

853

297

6630

425

51501

42

111

170

867

298

6737

426

52333

43

113

171

881

299

6846

427

53178

44

115

172

895

300

6957

428

54036

45

117

173

910

301

7069

429

54908

46

119

174

924

302

7183

430

55795

47

120

175

939

303

7299

431

56696

48

122

176

954

304

7417

432

57611

49

124

177

970

305

7537

433

58541

50

126

178

986

306

7658

434

59486

51

128

179

1001

307

7782

435

60446

52

131

180

1018

308

7908

436

61422

53

133

181

1034

309

8035

437

62414

54

135

182

1051

310

8165

438

63421

55

137

183

1068

311

8297

439

64445

56

139

184

1085

312

8431

440

65486

57

142

185

1103

313

8567

441

66543

58

144

186

1120

314

8705

442

67617

59

146

187

1138

315

8846

443

68709

60

148

188

1157

316

8988

444

69818

61

151

189

1175

317

9134

445

70945

62

153

190

1194

318

9281

446

72091

63

156

191

1214

319

9431

447

73254

64

158

192

1233

320

9583

448

74437

65

161

193

1253

321

9738

449

75639

66

164

194

1274

322

9895

450

76860

67

166

195

1294

323

10055

451

78101

68

169

196

1315

324

10217

452

79361

69

172

197

1336

325

10382

453

80643

70

174

198

1358

326

10550

454

81945

71

177

199

1380

327

10720

455

83267

72

180

200

1402

328

10893

456

84612

73

183

201

1425

329

11069

457

85978

74

186

202

1448

330

11248

458

87366

75

189

203

1471

331

11429

459

88776

76

192

204

1495

332

11614

460

90209

77

195

205

1519

333

11801

461

91666

78

198

206

1543

334

11992

462

93145

79

201

207

1568

335

12185

463

94649

80

205

208

1594

336

12382

464

96177

81

208

209

1619

337

12582

465

97730

82

211

210

1646

338

12785

466

99308

83

215

211

1672

339

12992

467

100911

84

218

212

1699

340

13201

468

102540

85

222

213

1727

341

13414

469

104195

86

225

214

1755

342

13631

470

105877

87

229

215

1783

343

13851

471

107587

88

233

216

1812

344

14075

472

109324

89

237

217

1841

345

14302

473

111088

90

240

218

1871

346

14533

474

112882

91

244

219

1901

347

14767

475

114704

92

248

220

1932

348

15006

476

116556

93

252

221

1963

349

15248

477

118438

94

256

222

1994

350

15494

478

120350

95

260

223

2027

351

15744

479

122293

96

265

224

2059

352

15999

480

124267

97

269

225

2093

353

16257

481

126273

98

273

226

2126

354

16519

482

128312

99

278

227

2161

355

16786

483

130383

100

282

228

2196

356

17057

484

132488

101

287

229

2231

357

17332

485

134627

102

291

230

2267

358

17612

486

136800

103

296

231

2304

359

17897

487

139009

104

301

232

2341

360

18185

488

141253

105

306

233

2379

361

18479

489

143533

106

311

234

2417

362

18777

490

145850

107

316

235

2456

363

19081

491

148205

108

321

236

2496

364

19389

492

150597

109

326

237

2536

365

19702

493

153029

110

331

238

2577

366

20020

494

155499

111

337

239

2619

367

20343

495

158010

112

342

240

2661

368

20671

496

160560

113

348

241

2704

369

21005

497

163152

114

353

242

2748

370

21344

498

165786

115

359

243

2792

371

21689

499

168463

116

365

244

2837

372

22039

500

171182

117

371

245

2883

373

22395

501

173946

118

377

246

2929

374

22756

502

176754

119

383

247

2977

375

23124

503

179608

120

389

248

3025

376

23497

504

182507

121

395

249

3074

377

23876

505

185454

122

402

250

3123

378

24262

506

188447

123

408

251

3174

379

24653

507

191490

124

415

252

3225

380

25051

508

194581

125

421

253

3277

381

25456

509

197722

126

428

254

3330

382

25867

510

200914

127

435

255

3384

383

26284

511

204000

Reference(s)

3GPP TS 25.321 Section 9.2.3.2a

7.1.5.8.3 Test purpose

To verify that the UE selects the correct transport block size based on the TFRI value signalled on the HS-SCCH.

7.1.5.8.4 Method of test

Definition of test variables:

Nslots

Number of HS-DSCH slots (1, 2, 3, 4, 5, 8 or 12 dependent on UE category)

Ncodes

Number of HS-DSCH codes per timeslot, 1 to 16

k

TFRI signalled on the HS-SCCH value (see Table 7.1.5.8.2)

TBsize

Transport Block size (see Table 7.1.5.8.2)

NPDUs

Number of MAC-d PDUs

MAC-hs_header_size

MAC-hs header size for the reference HS-DSCH radio bearer configuration under test.

MAC-d_PDU_size

MAC-d PDU size for the reference HS-DSCH radio bearer configuration under test.

Initial conditions

System Simulator:

1 cell, default parameters, Ciphering Off

User Equipment:

UE in idle mode

The following parameters are specific for this test case:

Common for all UE categories:

Parameter

Value

MAC-d PDU size

336 bits

MAC-hs receiver window size

16

Number of HARQ processes

1

Number of reordering queues

1

UE Category 1 to 4:

Parameter

Value

RLC Transmission window size

128

RLC Receiving window size

512

UE Category 5 and 6:

Parameter

Value

RLC Transmission window size

256

RLC Receiving window size

512

UE Category 7 to 10:

Parameter

Value

RLC Transmission window size

512

RLC Receiving window size

1536

UE Category 11 to 12:

Parameter

Value

RLC Transmission window size

768

RLC Receiving window size

3072

UE Category 13:

Parameter

Value

RLC Transmission window size

1024

RLC Receiving window size

4095

Test procedure

a) The SS establishes the reference radio bearer configuration “Interactive or background / UL:64 DL: [max bit rate depending on UE category] / PS RAB + UL:3.4 DL:3.4 kbps SRBs for DCCH” as specified in TS 34.108, clause 6.10.3.4.6.1. See note 1.

b) The SS closes the test loop using UE test loop mode 1 setting the UL RLC SDU size parameter to 39 octets (312 bits).

c) The SS sets Nslots = 2.

d) The SS sets Ncodes = 1.

e) The SS calculates TBsize and k for Nslots and Ncodes according to table 7.1.5.8.2

f) If TBsize is bigger than the UE capability for “Maximum number of bits of an HS-DSCH transport block received within an HS-DSCH TTI” then SS continues with step l) else step g). See note 2.

g) The SS calculates the maximum number of MAC-d PDUs that fits into the MAC-hs transport block:

NPDUs = floor((TBsize – MAC-hs_header_size) / MAC-d_PDU_size)

If NPDUs is bigger than 318 then SS continues with step m) else i).

h) The SS creates a MAC-hs PDU of size TBsize containing NPDUs MAC-d PDUs + padding. The payload data of the MAC-d PDUs contains 4 RLC SDUs of size NPDUs * MAC-d PDU payload size / 4 minus 8 bits (size of 7 bit length indicator and expansion bit). See note 3.

i) The SS transmits the MAC-hs PDU.

j) The SS checks that the UE returned RLC SDUs has the same content as the first 312 bits of the test data sent by the SS in downlink.

k) The SS increments Ncodes by 1. If Ncodes is ≤16 then SS repeats steps e) to k).

l) The SS sets Nslots to the next category supported by the UE and repeats steps d) to l). If there are no more categories supported by the UE (i.e. all categories have been tested) then the test is completed via steps m) through q). See note 2.

m) The SS opens the UE test loop.

n) The SS release the radio bearer.

o) The SS may optionally deactivate the radio bearer test mode.

NOTE 1: The SS configures the physical channel parameters according to the actual UE category under test.

NOTE 2: See table 18.2.1.4.1.1 in section 18.2.1.4.1 for 3.84 Mcps TDD HS-DSCH physical layer, RLC and MAC-hs capability parameters and the values for different UE 3.84 Mcps TDD HS-DSCH physical layer categories (UE categories). The capability parameters having impact on the test procedure are: “Maximum number of bits of an HS-DSCH transport block received within an HS-DSCH TTI” andMaximum number of HS-DSCH timeslots per TTI”

NOTE 3: The test data for transport channels on HS-DSCH is divided into 4 RLC SDUs to keep the SDU size not to exceed 1500 octets (limit of SDU size in SM).

Expected sequence

Step

Direction

Message

Comments

UE

SS

1

<–

SYSTEM INFORMATION (BCCH)

Broadcast

2

<–

PAGING TYPE 1 (PCCH)

Paging (PS domain, P-TMSI)

3

–>

RRC CONNECTION REQUEST (CCCH)

RRC

4

<–

RRC CONNECTION SETUP (CCCH)

RRC

5

–>

RRC CONNECTION SETUP COMPLETE (DCCH)

RRC

6

–>

SERVICE REQUEST (DCCH)

GMM

7

<–

SECURITY MODE COMMAND

RRC see note 1

8

–>

SECURITY MODE COMPLETE

RRC see note 1

9

<–

ACTIVATE RB TEST MODE (DCCH)

TC

10

–>

ACTIVATE RB TEST MODE COMPLETE (DCCH)

TC

11

<–

RADIO BEARER SETUP (DCCH)

RRC. For the PS radio bearer the ‘pdcp info’ IE shall be omitted.

12

–>

RADIO BEARER SETUP COMPLETE (DCCH)

RRC

13

<–

CLOSE UE TEST LOOP (DCCH)

TC

UE test mode 1

RLC SDU size is set to 39 octets

14

–>

CLOSE UE TEST LOOP COMPLETE (DCCH)

TC

15

SS

The SS calculates test data for the first TFRC

16

<–

DOWNLINK MAC-hs PDU (4 x RLC SDU)

Send test data. The MAC-hs PDU contains 4 RLC SDUs

17

–>

UPLINK RLC SDUs

The SS checks that the content of the received UL RLC SDUs are correct

18

SS

The SS calculates test data for next TFRC and repeat steps 16 to 18 until all TFRCs have been tested.

19

<–

OPEN UE TEST LOOP (DCCH)

TC

20

–>

OPEN UE TEST LOOP COMPLETE (DCCH)

TC

21

RB RELEASE

RRC

22

<–

DEACTIVATE RB TEST MODE

TC

Optional step

23

–>

DEACTIVATE RB TEST MODE COMPLETE

TC

Optional step

Note 1: In addition to activate integrity protection Step 6 and Step 7 are inserted in order to stop T3317 timer in the UE, which starts after transmitting SERVICE REQUEST message.

7.1.5.8.5 Test requirements

For each TFRC the UE shall return a UL RLC SDUs with the same content as the first 312 bits of the test data sent by the SS in downlink.

7.1.5.9 MAC-hs data transmission with enhanced TS0 (1.28 Mcps TDD)

7.1.5.9.1 Definition and applicability

All UEs which support HS-PDSCH and 1.28Mcps TDD and enhanced TS0.

7.1.5.9.2 Conformance requirement

For 1.28 Mcps, the timeslots to be used for HS-PDSCH resources are signalled by the bits xts,1, xts,2, …, xts,5, where bit xts,n carries the information for timeslot n+1. Timeslot 1 cannot be used for HS-DSCH resources. If the signalling bit is set (i.e. equal to 1), then the corresponding timeslot shall be used for HS-PDSCH resources. Otherwise, the timeslot shall not be used. All used timeslots shall use the same channelisation code set, as signalled by the channelisation code set information bits.

When indicated by the higher layer that Timeslot 0 can be used for HS-PDSCH, bit xts,1 carries the information for timeslot 0. If xts,1 is set (i.e. equal to 1), Timeslot 0 shall be used for HS-PDSCH resource. Otherwise, Timeslot 0 shall not be used.

Reference(s)

TS 25.222 clause 4.6.1.2.1

7.1.5.9.3 Test purpose

To verify that the UE can receive the data transmitted in TS0 with MAC-hs.

7.1.5.9.4 Method of test

Initial conditions

System Simulator:

1 cell, default parameters, Ciphering Off cell1 configures 3 carrier frequency, one is primary frequency, other are secondary frequencies. The frequency relation show as below:

Parameter

Cell 1

UTRA RF Channel Number1

Ch. 1

UTRA RF Channel Number2

Ch. 2

UTRA RF Channel Number3

Ch.3

User Equipment:

UE in idle mode

Test procedure

a) The SS establishes the reference radio bearer configuration specified in TS 34.108 clause 6.11.5.4.7.6 using condition A11 as specified in clause 9.1 of TS 34.108.

b) The SS closes the test loop using UE test loop mode 1 setting the UL RLC SDU size parameter to 39 octets (312 bits).

c) The SS transmits a MAC-hs PDU in TS0.

d) The SS checks that the UE returned RLC SDUs has the same content as the first 312 bits of the test data sent by the SS in downlink.

Expected sequence

Step

Direction

Message

Comments

UE

SS

1

<–

RADIO BEARER SETUP (DCCH)

RRC. For the PS radio bearer the ‘pdcp info’ IE shall be omitted.

2

–>

RADIO BEARER SETUP COMPLETE (DCCH)

RRC

3

<–

CLOSE UE TEST LOOP (DCCH)

TC

UE test mode 1

RLC SDU size is set to 39 octets

4

–>

CLOSE UE TEST LOOP COMPLETE (DCCH)

TC

5

<–

DOWNLINK MAC-hs PDU

Send test data inTS0

6

–>

UPLINK RLC SDUs

The SS checks that the content of the received UL RLC SDUs are correct

Specific Message Contents

RADIO BEARER SETUP (Step 1)

Use the same message as specified for "Packet to CELL_DCH / E-DCH / HS-DSCH using three multiplexing options (3/3) and SRBs mapped on DCH/DCH" in 34.108 with the following exceptions:

Information Element

Value/remark

Downlink HS-PDSCH Information

Not Present

– CHOICE mode

TDD

– CHOICE TDD option

1.28 Mcps

– TS0 Indicator

TRUE

Multi-frequency Info

– Second Frequency Info

UTRA RF Channel Number2

7.1.5.9.5 Test requirements

In step6 the UE shall return a UL RLC SDUs with the same content as the first 312 bits of the test data sent by the SS in downlink.