5B.3.2 Burst Types

25.2213GPPPhysical channels and mapping of transport channels onto physical channels (TDD)Release 17TS

Four types of bursts are defined. All of them consist of two data symbol fields, a midamble and a guard period, the lengths of which are different for the individual burst types. Thus, the number of data symbols in a burst depends on the SF and the burst type, as depicted in table 8AA.

Table 8AA: Number of data symbols (N) for burst type 1, 2, 3 and 4

Spreading factor (SF)

Burst Type 1

Burst Type 2

Burst Type 3

Burst Type 4

1

3904

4416

3712

4224

2

1952

2208

1856

N/A

4

976

1104

928

N/A

8

488

552

464

N/A

16

244

276

232

N/A

32

122

138

116

132

The support of burst types 1, 2 and 3 is mandatory for UEs supporting transmit and receive functions. UEs supporting transmit and receive functions and also MBSFN operation must additionally support burst type 4. UEs with receive only capability need only support burst type 4.. The three different bursts defined here are well suited for different applications, as described in the following sections.

5B.3.2.1 Burst Type 1

Burst type 1 can be used for uplink and downlink. Due to its longer midamble field this burst type supports the construction of a larger number of training sequences. The maximum number of training sequences depends on the cell configuration. For burst type 1 this number may be 4, 8, or 16.

The data fields of burst type 1 are 1952 chips long. The corresponding number of symbols depends on the spreading factor, as indicated in table 8AA above. The midamble of burst type 1 has a length of 1024 chips. The guard period for the burst type 1 is 192 chip periods long. Burst type 1 is shown in Figure 18AC. The contents of the burst fields are described in table 8AB.

Table 8AB: The contents of burst type 1 fields

Chip number (CN)

Length of field in chips

Length of field in symbols

Contents of field

0-1951

1952

Cf table 8AA

Data symbols

1952-2975

1024

Midamble

2976-4927

1952

Cf table 8AA

Data symbols

4928-5119

192

Guard period

Figure 18AC: Burst structure of burst type 1. GP denotes the guard period and CP the chip periods

5B.3.2.2 Burst Type 2

Burst type 2 can be used for uplink and downlink. It offers a longer data field than burst type 1 at the cost of a shorter midamble. Due to the shorter midamble field the burst type 2 supports a maximum number of training sequences of 4 or 8 only, depending on the cell configuration.

The data fields of the burst type 2 are 2208 chips long. The corresponding number of symbols depends on the spreading factor, as indicated in table 8AA above. The guard period for the burst type 2 is 192 chip periods long. Burst type 2 is shown in Figure 18AD. The contents of the burst fields are described in table 8AC.

Table 8AC: The contents of burst type 2 fields

Chip number (CN)

Length of field in chips

Length of field in symbols

Contents of field

0-2207

2208

cf table 8AA

Data symbols

2208-2719

512

Midamble

2720-4927

2208

cf table 8AA

Data symbols

4928-5119

192

Guard period

Figure 18AD: Burst structure of the burst type 2. GP denotes the guard period and CP the chip periods

5B.3.2.3 Burst Type 3

Burst type 3 is used for uplink only. Due to the longer guard period it is suitable for initial access or access to a new cell after handover. It offers the same number of training sequences as burst type 1.

The data fields of the burst type 3 have a length of 1952 chips and 1760 chips, respectively. The corresponding number of symbols depends on the spreading factor, as indicated in table 8AA above. The midamble of burst type 3 has a length of 1024 chips. The guard period for the burst type 3 is 384 chip periods long. Burst type 3 is shown in Figure 18AE. The contents of the burst fields are described in table 8AD.

Table 8AD: The contents of burst type 3 fields

Chip number (CN)

Length of field in chips

Length of field in symbols

Contents of field

0-1951

1952

Cf table 8AA

Data symbols

1952-2975

1024

Midamble

2976-4735

1760

Cf table 8AA

Data symbols

4736-5119

384

Guard period

Figure 18AE: Burst structure of the burst type 3. GP denotes the guard period and CP the chip periods

5B.3.2.3A Burst Type 4

The burst type 4 is used for downlink MBSFN operation only and supports a single training sequence.

The data fields of the burst type 4 are 2112 chips long. The corresponding number of symbols is 132 as indicated in table 8AA above. The midamble of burst type 4 has a length of 640 chips. The guard period for the burst type 4 is 256 chip periods long. The burst type 4 is shown in Figure 18AEA. The contents of the burst fields are described in table 8ADA.

Table 8ADA: The contents of burst type 4 fields

Chip number (CN)

Length of field in chips

Length of field in symbols

Contents of field

0-2111

2112

Cf table 8AA

Data symbols

2112-2751

640

Midamble

2752-4863

2112

Cf table 8AA

Data symbols

4864-5119

256

Guard period

Figure 18AEA: Burst structure of the burst type 4. GP denotes the guard period and CP the chip periods

5B.3.2.4 Transmission of TFCI

All burst types 1, 2, 3 and 4 provide the possibility for transmission of TFCI.

The transmission of TFCI is negotiated at call setup and can be re-negotiated during the call. For each CCTrCH it is indicated by higher layer signalling, which TFCI format is applied, except for the MBSFN FACH where the (16,5) bi-orthogonal code is always used for TFCI when TFCI is applied . Additionally for each allocated timeslot it is signalled individually whether that timeslot carries the TFCI or not. The TFCI is always present in the first timeslot in a radio frame for each CCTrCH. If a time slot contains the TFCI, then it is always transmitted using the physical channel with the lowest physical channel sequence number (p) in that timeslot. Physical channel sequence numbering is determined by the rate matching function and is described in [7].

The transmission of TFCI is done in the data parts of the respective physical channel. In DL the TFCI code word bits and data bits are subject to the same spreading procedure as depicted in [8]. In DL, the modulation applied to the TFCI code word bits is the same as that applied to the data symbols. In UL, independent of the SF that is applied to the data symbols in the burst, the data in the TFCI field are always spread with SF=32 using the channelisation code in the branch with the highest code numbering of the allowed OVSF sub tree, as depicted in [8]. Hence the midamble structure and length is not changed. The TFCI code word is to be transmitted directly adjacent to the midamble, possibly after the TPC. Figure 18AF shows the position of the TFCI code word in a traffic burst in downlink. Figure 18AG shows the position of the TFCI code word in a traffic burst in uplink.

Figure 18AF: Position of the TFCI code word in the traffic burst in case of downlink

Figure 18AG: Position of the TFCI code word in the traffic burst in case of uplink

Two examples of TFCI transmission in the case of multiple DPCHs used for a connection are given in the Figure 18AH and Figure 18AI below. Combinations of the two schemes shown are also applicable.

Figure 18AH: Example of TFCI transmission with physical channels multiplexed in code domain

Figure 18AI: Example of TFCI transmission with physical channels multiplexed in time domain

5B.3.2.5 Transmission of TPC

Burst types 1, 2 and 3 for dedicated and shared channels provide the possibility for transmission of TPC in uplink.

The transmission of TPC is done in the data parts of the traffic burst. Independent of the SF that is applied to the data symbols in the burst, the data in the TPC field are always spread with SF=32 using the channelisation code in the branch with the highest code numbering of the allowed OVSF sub tree, as depicted in [8]. Hence the midamble structure and length is not changed. The TPC information is to be transmitted directly after the midamble. Figure 18AJ shows the position of the TPC in a traffic burst.

For every user the TPC information shall be transmitted at least once per transmitted frame. If a TFCI is applied for a CCTrCH, TPC shall be transmitted with the same channelization codes and in the same timeslots as the TFCI. If no TFCI is applied for a CCTrCH, TPC shall be transmitted using the physical channel corresponding to physical channel sequence number p=1. Physical channel sequence numbering is determined by the rate matching function and is described in [7].

Figure 18AJ: Position of TPC information in the traffic burst

The length of the TPC field is NTPC bits. The TPC field is formed via repetition encoding a single bit bTPC, NTPC times.

The relationship between bTPC and the TPC command is shown in table 8AE.

Table 8AE: TPC bit pattern

bTPC

TPC command

Meaning

0

‘Down’

Decrease Tx Power

1

‘Up’

Increase Tx Power

5B.3.2.6 Timeslot formats

5B.3.2.6.1 Downlink timeslot formats

The downlink timeslot format depends on the spreading factor, midamble length and on the number of TFCI code word bits, as depicted in the table 8AF. For MBSFN operation the timeslot format also depends upon the symbol modulation scheme used. Slot formats 20-27 are only applicable to MBSFN operation with burst type 4.

Table 8AF: Time slot formats for the Downlink

Slot Format

#

Spreading Factor

Midamble length (chips)

NTFCI code word (bits)

Bits/slot

NData/Slot (bits)

Ndata/data field (bits)

0

32

1024

0

244

244

122

1

32

1024

4

244

240

120

2

32

1024

8

244

236

118

3

32

1024

16

244

228

114

4

32

1024

32

244

212

106

5

32

512

0

276

276

138

6

32

512

4

276

272

136

7

32

512

8

276

268

134

8

32

512

16

276

260

130

9

32

512

32

276

244

122

10

1

1024

0

7808

7808

3904

11

1

1024

4

7808

7804

3902

12

1

1024

8

7808

7800

3900

13

1

1024

16

7808

7792

3896

14

1

1024

32

7808

7776

3888

15

1

512

0

8832

8832

4416

16

1

512

4

8832

8828

4414

17

1

512

8

8832

8824

4412

18

1

512

16

8832

8816

4408

19

1

512

32

8832

8800

4400

20 (QPSK)

32

640

0

264

264

132

21 (QPSK)

32

640

16

264

248

124

22 (16QAM)

32

640

0

528

528

264

23 (16QAM)

32

640

16

528

512

256

24 (QPSK)

1

640

0

8448

8448

4224

25 (QPSK)

1

640

16

8448

8432

4216

26 (16QAM)

1

640

0

16896

16896

8448

27 (16QAM)

1

640

16

16896

16880

8440

5B.3.2.6.2 Uplink timeslot formats

The uplink timeslot format depends on the spreading factor, midamble length, guard period length and on the number of TFCI code word bits. Due to TPC, different amount of bits are mapped to the two data fields. The timeslot formats are depicted in the table 8AG. Note that slot format #90 shall only be used for HS_SICH.

Table 8AG: Time slot formats for the Uplink

Slot Format

#

Spreading Factor

Midamble length (chips)

Guard Period (chips)

NTFCI code word (bits)

NTPC (bits)

Bits/slot

NData/Slot (bits)

Ndata/data field(1) (bits)

Ndata/data field(2) (bits)

0

32

1024

192

0

0

244

244

122

122

1

32

1024

192

0

2

244

242

122

120

2

32

1024

192

4

2

244

238

120

118

3

32

1024

192

8

2

244

234

118

116

4

32

1024

192

16

2

244

226

114

112

5

32

1024

192

32

2

244

210

106

104

6

32

512

192

0

0

276

276

138

138

7

32

512

192

0

2

276

274

138

136

8

32

512

192

4

2

276

270

136

134

9

32

512

192

8

2

276

266

134

132

10

32

512

192

16

2

276

258

130

128

11

32

512

192

32

2

276

242

122

120

12

16

1024

192

0

0

488

488

244

244

13

16

1024

192

0

2

486

484

244

240

14

16

1024

192

4

2

482

476

240

236

15

16

1024

192

8

2

478

468

236

232

16

16

1024

192

16

2

470

452

228

224

17

16

1024

192

32

2

454

420

212

208

18

16

512

192

0

0

552

552

276

276

19

16

512

192

0

2

550

548

276

272

20

16

512

192

4

2

546

540

272

268

21

16

512

192

8

2

542

532

268

264

22

16

512

192

16

2

534

516

260

256

23

16

512

192

32

2

518

484

244

240

24

8

1024

192

0

0

976

976

488

488

25

8

1024

192

0

2

970

968

488

480

26

8

1024

192

4

2

958

952

480

472

27

8

1024

192

8

2

946

936

472

464

28

8

1024

192

16

2

922

904

456

448

29

8

1024

192

32

2

874

840

424

416

30

8

512

192

0

0

1104

1104

552

552

31

8

512

192

0

2

1098

1096

552

544

32

8

512

192

4

2

1086

1080

544

536

33

8

512

192

8

2

1074

1064

536

528

34

8

512

192

16

2

1050

1032

520

512

35

8

512

192

32

2

1002

968

488

480

36

4

1024

192

0

0

1952

1952

976

976

37

4

1024

192

0

2

1938

1936

976

960

38

4

1024

192

4

2

1910

1904

960

944

39

4

1024

192

8

2

1882

1872

944

928

40

4

1024

192

16

2

1826

1808

912

896

41

4

1024

192

32

2

1714

1680

848

832

42

4

512

192

0

0

2208

2208

1104

1104

43

4

512

192

0

2

2194

2192

1104

1088

44

4

512

192

4

2

2166

2160

1088

1072

45

4

512

192

8

2

2138

2128

1072

1056

46

4

512

192

16

2

2082

2064

1040

1024

47

4

512

192

32

2

1970

1936

976

960

48

2

1024

192

0

0

3904

3904

1952

1952

49

2

1024

192

0

2

3874

3872

1952

1920

50

2

1024

192

4

2

3814

3808

1920

1888

51

2

1024

192

8

2

3754

3744

1888

1856

52

2

1024

192

16

2

3634

3616

1824

1792

53

2

1024

192

32

2

3394

3360

1696

1664

54

2

512

192

0

0

4416

4416

2208

2208

55

2

512

192

0

2

4386

4384

2208

2176

56

2

512

192

4

2

4326

4320

2176

2144

57

2

512

192

8

2

4266

4256

2144

2112

58

2

512

192

16

2

4146

4128

2080

2048

59

2

512

192

32

2

3906

3872

1952

1920

59a

1

1024

192

0

0

7808

7808

3904

3904

59b

1

1024

192

0

2

7746

7744

3904

3840

59c

1

1024

192

4

2

7622

7616

3840

3776

59d

1

1024

192

8

2

7498

7488

3776

3712

59e

1

1024

192

16

2

7250

7232

3648

3584

59f

1

1024

192

32

2

6754

6720

3392

3328

59g

1

512

192

0

0

8832

8832

4416

4416

59h

1

512

192

0

2

8770

8768

4416

4352

59i

1

512

192

4

2

8646

8640

4352

4288

59j

1

512

192

8

2

8522

8512

4288

4224

59k

1

512

192

16

2

8274

8256

4160

4096

59l

1

512

192

32

2

7778

7744

3904

3840

60

32

1024

384

0

0

232

232

122

110

61

32

1024

384

0

2

232

230

122

108

62

32

1024

384

4

2

232

226

120

106

63

32

1024

384

8

2

232

222

118

104

64

32

1024

384

16

2

232

214

114

100

65

32

1024

384

32

2

232

198

106

92

66

16

1024

384

0

0

464

464

244

220

67

16

1024

384

0

2

462

460

244

216

68

16

1024

384

4

2

458

452

240

212

69

16

1024

384

8

2

454

444

236

208

70

16

1024

384

16

2

446

428

228

200

71

16

1024

384

32

2

430

396

212

184

72

8

1024

384

0

0

928

928

488

440

73

8

1024

384

0

2

922

920

488

432

74

8

1024

384

4

2

910

904

480

424

75

8

1024

384

8

2

898

888

472

416

76

8

1024

384

16

2

874

856

456

400

77

8

1024

384

32

2

826

792

424

368

78

4

1024

384

0

0

1856

1856

976

880

79

4

1024

384

0

2

1842

1840

976

864

80

4

1024

384

4

2

1814

1808

960

848

81

4

1024

384

8

2

1786

1776

944

832

82

4

1024

384

16

2

1730

1712

912

800

83

4

1024

384

32

2

1618

1584

848

736

84

2

1024

384

0

0

3712

3712

1952

1760

85

2

1024

384

0

2

3682

3680

1952

1728

86

2

1024

384

4

2

3622

3616

1920

1696

87

2

1024

384

8

2

3562

3552

1888

1664

88

2

1024

384

16

2

3442

3424

1824

1600

89

2

1024

384

32

2

3202

3168

1696

1472

89a

1

1024

384

0

0

7424

7424

3904

3520

89b

1

1024

384

0

2

7362

7360

3904

3456

89c

1

1024

384

4

2

7238

7232

3840

3392

89d

1

1024

384

8

2

7114

7104

3776

3328

89e

1

1024

384

16

2

6866

6848

3648

3200

89f

1

1024

384

32

2

6370

6336

3392

2944

90

32

1024

192

0

8

244

236

122

114